首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To project high‐dimensional data to a 2D domain, there are two well‐established classes of approaches: RadViz and Star Coordinates. Both are well‐explored in terms of accuracy, completeness, distortions, and interaction issues. We present a generalization of both RadViz and Star Coordinates such that it unifies both approaches. We do so by considering the space of all projective projections. This gives additional degrees of freedom, which we use for three things: Firstly, we define a smooth transition between RadViz and Star Coordinates allowing the user to exploit the advantages of both approaches. Secondly, we define a data‐dependent magic lens to explore the data. Thirdly, we optimize the new degrees of freedom to minimize distortion. We apply our approach to a number of high‐dimensional benchmark datasets.  相似文献   

2.
In this paper, we propose an interactive technique for constructing a 3D scene via sparse user inputs. We represent a 3D scene in the form of a Layered Depth Image (LDI) which is composed of a foreground layer and a background layer, and each layer has a corresponding texture and depth map. Given user‐specified sparse depth inputs, depth maps are computed based on superpixels using interpolation with geodesic‐distance weighting and an optimization framework. This computation is done immediately, which allows the user to edit the LDI interactively. Additionally, our technique automatically estimates depth and texture in occluded regions using the depth discontinuity. In our interface, the user paints strokes on the 3D model directly. The drawn strokes serve as 3D handles with which the user can pull out or push the 3D surface easily and intuitively with real‐time feedback. We show our technique enables efficient modeling of LDI that produce sufficient 3D effects.  相似文献   

3.
We describe a painting machine and associated algorithms. Our modified industrial robot works with visual feedback and applies acrylic paint from a repository to a canvas until the created painting resembles a given input image or scene. The color differences between canvas and input are used to direct the application of new strokes. We present two optimization‐based algorithms that place such strokes in relation to already existing ones. Using these methods we are able to create different painting styles, one that tries to match the input colors with almost transparent strokes and another one that creates dithering patterns of opaque strokes that approximate the input color. The machine produces paintings that mimic those created by human painters and allows us to study the painting process as well as the creation of artworks.  相似文献   

4.
Fast realistic rendering of objects in scattering media is still a challenging topic in computer graphics. In presence of participating media, a light beam is repeatedly scattered by media particles, changing direction and getting spread out. Explicitly evaluating this beam distribution would enable efficient simulation of multiple scattering events without involving costly stochastic methods. Narrow beam theory provides explicit equations that approximate light propagation in a narrow incident beam. Based on this theory, we propose a closed‐form distribution function for scattered beams. We successfully apply it to the image synthesis of scenes in which scattering occurs, and show that our proposed estimation method is more accurate than those based on the Wentzel‐Kramers‐Brillouin (WKB) theory.  相似文献   

5.
This paper presents an efficient approach for generating weathering effects with detailed appearance variations in a single image. Previous approaches merely change chroma or reflectance of weathered objects, which is not sufficient for materials with detailed shading and texture variations, such as growing moss and peeling plaster. Our method propagates such detailed features via seamless patch‐based synthesis driven by weathering degree distribution. Unlike previous methods, the weathering degrees are calculated efficiently using Radial Basis Functions even for materials with wide color variations. We use graph cut‐based optimization to identify the most weathered region as a “weathering exemplar”, from which we sample weathering patches. We demonstrate our method enables us to generate various types of detailed weathering effects interactively.  相似文献   

6.
    
The study of face alignment has been an area of intense research in computer vision, with its achievements widely used in computer graphics applications. The performance of various face alignment methods is often image‐dependent or somewhat random because of their own strategy. This study aims to develop a method that can select an input image with good face alignment results from many results produced by a single method or multiple ones. The task is challenging because different face alignment results need to be evaluated without any ground truth. This study addresses this problem by designing a feasible feature extraction scheme to measure the quality of face alignment results. The feature is then used in various machine learning algorithms to rank different face alignment results. Our experiments show that our method is promising for ranking face alignment results and is able to pick good face alignment results, which can enhance the overall performance of a face alignment method with a random strategy. We demonstrate the usefulness of our ranking‐enhanced face alignment algorithm in two practical applications: face cartoon stylization and digital face makeup.  相似文献   

7.
Mobile phones and tablets are rapidly gaining significance as omnipresent image and video capture devices. In this context we present an algorithm that allows such devices to capture high dynamic range (HDR) video. The design of the algorithm was informed by a perceptual study that assesses the relative importance of motion and dynamic range. We found that ghosting artefacts are more visually disturbing than a reduction in dynamic range, even if a comparable number of pixels is affected by each. We incorporated these findings into a real‐time, adaptive metering algorithm that seamlessly adjusts its settings to take exposures that will lead to minimal visual artefacts after recombination into an HDR sequence. It is uniquely suitable for real‐time selection of exposure settings. Finally, we present an off‐line HDR reconstruction algorithm that is matched to the adaptive nature of our real‐time metering approach.  相似文献   

8.
Eulerian Method of Moment (MoM) solvers are gaining popularity for multi‐phase CFD simulation involving bubbles or droplets in process engineering. Because the actual positions of bubbles are uncertain, the spatial distribution of bubbles is described by scalar fields of moments, which can be interpreted as probability density functions. Visualizing these simulation results and comparing them to physical experiments is challenging, because neither the shape nor the distribution of bubbles described by the moments lend themselves to visual interpretation. In this work, we describe a visualization approach that provides explicit instances of the bubble distribution and produces bubble geometry based on local flow properties. To facilitate animation, the instancing of the bubble distribution provides coherence over time by advancing bubbles between time steps and updating the distribution. Our approach provides an intuitive visualization and enables direct visual comparison of simulation results to physical experiments.  相似文献   

9.
We propose a personality trait exaggeration system emphasizing the impression of human face in images, based on multi‐level features learning and exaggeration. These features are called Personality Trait Model (PTM). Abstract level of PTM is social psychology trait of face perception such as amiable, mean, cute and so on. Concrete level of PTM is shape feature and texture feature. A training phase is presented to learn multi‐level features of faces from different images. Statistical survey is taken to label sample images with people's first impressions. From images with the same labels, we capture not only shape features but also texture features to enhance exaggeration effect. Texture feature is expressed by matrix to reflect depth of facial organs, wrinkles and so on. In application phase, original images will be exaggerated using PTM iteratively. And exaggeration rate for each iteration is constrained to keep likeness with the original face. Experimental results demonstrate that our system can emphasize chosen social psychology traits effectively.  相似文献   

10.
Shadow removal is a challenging problem and previous approaches often produce de‐shadowed regions that are visually inconsistent with the rest of the image. We propose an automatic shadow region harmonization approach that makes the appearance of a de‐shadowed region (produced using any previous technique) compatible with the rest of the image. We use a shadow‐guided patch‐based image synthesis approach that reconstructs the shadow region using patches sampled from non‐shadowed regions. This result is then refined based on the reconstruction confidence to handle unique textures. Qualitative comparisons over a wide range of images, and a quantitative evaluation on a benchmark dataset show that our technique significantly improves upon the state‐of‐the‐art.  相似文献   

11.
This paper addresses the increasing demand in industry for methods to analyze and visualize multimodal data involving a spectral modality. Two data modalities are used: high‐resolution X‐ray computed tomography (XCT) for structural characterization and low‐resolution X‐ray fluorescence (XRF) spectral data for elemental decomposition. We present InSpectr, an integrated tool for the interactive exploration and visual analysis of multimodal, multiscalar data. The tool has been designed around a set of tasks identified by domain experts in the fields of XCT and XRF. It supports registered single scalar and spectral datasets optionally coupled with element maps and reference spectra. InSpectr is instantiating various linked views for the integration of spatial and non‐spatial information to provide insight into an industrial component's structural and material composition: views with volume renderings of composite and individual 3D element maps visualize global material composition; transfer functions defined directly on the spectral data and overlaid pie‐chart glyphs show elemental composition in 2D slice‐views; a representative aggregated spectrum and spectra density histograms are introduced to provide a global overview in the spectral view. Spectral magic lenses, spectrum probing and elemental composition probing of points using a pie‐chart view and a periodic table view aid the local material composition analysis. Two datasets are investigated to outline the usefulness of the presented techniques: a 3D virtually created phantom with a brass metal alloy and a real‐world 2D water phantom with insertions of gold, barium, and gadolinium. Additionally a detailed user evaluation of the results is provided.  相似文献   

12.
To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation.  相似文献   

13.
Visual computing has become highly attractive for boosting research endeavors in the materials science domain. Using visual computing, a multitude of different phenomena may now be studied, at various scales, dimensions, or using different modalities. This was simply impossible before. Visual computing techniques provide novel insights in order to understand complex material systems of interest, which is demonstrated by strongly rising number of new approaches, publishing new techniques for materials analysis and simulation. Outlining the proximity of materials science and visual computing, this state of the art report focuses on the intersection of both domains in order to guide research endeavors in this field. We provide a systematic survey on the close interrelations of both fields as well as how they profit from each other. Analyzing the existing body of literature, we review the domain of visual computing supported materials science, starting with the definition of materials science as well as material systems for which visual computing is frequently used. Major tasks for visual computing, visual analysis and visualization in materials sciences are identified, as well as simulation and testing techniques, which are providing the data for the respective analyses. We reviewed the input data characteristics and the direct and derived outputs, the visualization techniques and visual metaphors used, as well as the interactions and analysis workflows employed. All our findings are finally integrated in a cumulative matrix, giving insights about the different interrelations of both domains. We conclude our report with the identification of open high level and low level challenges for future research.  相似文献   

14.
15.
A person's handwriting appears differently within a typical range of variations, and the shapes of handwriting characters also show complex interaction with their nearby neighbors. This makes automatic synthesis of handwriting characters and paragraphs very challenging. In this paper, we propose a method for synthesizing handwriting texts according to a writer's handwriting style. The synthesis algorithm is composed by two phases. First, we create the multidimensional morphable models for different characters based on one writer's data. Then, we compute the cursive probability to decide whether each pair of neighboring characters are conjoined together or not. By jointly modeling the handwriting style and conjoined property through a novel trajectory optimization, final handwriting words can be synthesized from a set of collected samples. Furthermore, the paragraphs’ layouts are also automatically generated and adjusted according to the writer's style obtained from the same dataset. We demonstrate that our method can successfully synthesize an entire paragraph that mimic a writer's handwriting using his/her collected handwriting samples.  相似文献   

16.
Our method approximates exact texture filtering for arbitrary scales and translations of an image while taking into account the performance characteristics of modern GPUs. Our algorithm is fast because it accesses textures with a high degree of spatial locality. Using bilinear samples guarantees that the texels we read are in a regular pattern and that we use a hardware accelerated path. We control the texel weights by manipulating the u, v parameters of each sample and the blend factor between the samples. Our method is similar in quality to Cardinality‐Constrained Texture Filtering [ MS13 ] but runs two times faster.  相似文献   

17.
Traditional multivariate clustering approaches are common in many geovisualization applications. These algorithms are used to define geodemographic profiles, ecosystems and various other land use patterns that are based on multivariate measures. Cluster labels are then projected onto a choropleth map to enable analysts to explore spatial dependencies and heterogeneity within the multivariate attributes. However, local variations in the data and choices of clustering parameters can greatly impact the resultant visualization. In this work, we develop a visual analytics framework for exploring and comparing the impact of geographical variations for multivariate clustering. Our framework employs a variety of graphical configurations and summary statistics to explore the spatial extents of clustering. It also allows users to discover patterns that can be concealed by traditional global clustering via several interactive visualization techniques including a novel drag & drop clustering difference view. We demonstrate the applicability of our framework over a demographics dataset containing quick facts about counties in the continental United States and demonstrate the need for analytical tools that can enable users to explore and compare clustering results over varying geographical features and scales.  相似文献   

18.
When human luminance perception operates close to its absolute threshold, i. e., the lowest perceivable absolute values, appearance changes substantially compared to common photopic or scotopic vision. In particular, most observers report perceiving temporally‐varying noise. Two reasons are physiologically plausible; quantum noise (due to the low absolute number of photons) and spontaneous photochemical reactions. Previously, static noise with a normal distribution and no account for absolute values was combined with blue hue shift and blur to simulate scotopic appearance on a photopic display for movies and interactive applications (e.g., games). We present a computational model to reproduce the specific distribution and dynamics of “scotopic noise” for specific absolute values. It automatically introduces a perceptually‐calibrated amount of noise for a specific luminance level and supports animated imagery. Our simulation runs in milliseconds at HD resolution using graphics hardware and favorably compares to simpler alternatives in a perceptual experiment.  相似文献   

19.
20.
    
We present an efficient ray‐tracing technique to render bokeh effects produced by parametric aspheric lenses. Contrary to conventional spherical lenses, aspheric lenses do generally not permit a simple closed‐form solution of ray‐surface intersections. We propose a numerical root‐finding approach, which uses tight proxy surfaces to ensure a good initialization and convergence behavior. Additionally, we simulate mechanical imperfections resulting from the lens fabrication via a texture‐based approach. Fractional Fourier transform and spectral dispersion add additional realism to the synthesized bokeh effect. Our approach is well‐suited for execution on graphics processing units (GPUs) and we demonstrate complex defocus‐blur and lens‐flare effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号