首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rendering participating media is still a challenging and time consuming task. In such media light interacts at every differential point of its path. Several rendering algorithms are based on ray marching: dividing the path of light into segments and calculating interactions at each of them. In this work, we revisit and analyze ray marching both as a quadrature integrator and as an initial value problem solver, and apply higher order adaptive solvers that ensure several interesting properties, such as faster convergence, adaptiveness to the mathematical definition of light transport and robustness to singularities. We compare several numerical methods, including standard ray marching and Monte Carlo integration, and illustrate the benefits of different solvers for a variety of scenes. Any participating media rendering algorithm that is based on ray marching may benefit from the application of our approach by reducing the number of needed samples (and therefore, rendering time) and increasing accuracy.  相似文献   

2.
The notions of Finite‐Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures provide a strong framework for the analysis and visualization of complex technical flows. Their definition is simple and intuitive, and they are built on a deep theoretical foundation. We apply these concepts to enable the analysis of flows in the immediate vicinity of the boundaries of flow‐embedded objects by limiting the Lagrangian analysis to surfaces closely neighboring these boundaries. To this purpose, we present an approach to approximate FTLE fields over such surfaces. Furthermore, we achieve an effective depiction of boundary‐related flow structures such as separation and attachment over object boundaries and specific insight into the surrounding flow using several specifically chosen visualization techniques. We document the applicability of our methods by presenting a number of application examples.  相似文献   

3.
We introduce a set of robust importance sampling techniques which allow efficient calculation of direct and indirect lighting from arbitrary light sources in both homogeneous and heterogeneous media. We show how to distribute samples along a ray proportionally to the incoming radiance for point and area lights. In heterogeneous media, we decouple ray marching from light calculations by computing a representation of the transmittance function that can be quickly evaluated during sampling, at the cost of a small amount of bias. This representation also allows the calculation of another probability density function which can direct samples to regions most likely to scatter light. These techniques are orthogonal and can be combined via multiple importance sampling to further reduce variance. Our method has very modest per‐ray memory requirements and does not require any preprocessing, making it simple to integrate into production ray tracing based renderers.  相似文献   

4.
Signed distance functions (SDF) to explicit or implicit surface representations are intensively used in various computer graphics and visualization algorithms. Among others, they are applied to optimize collision detection, are used to reconstruct data fields or surfaces, and, in particular, are an obligatory ingredient for most level set methods. Level set methods are common in scientific visualization to extract surfaces from scalar or vector fields. Usual approaches for the construction of an SDF to a surface are either based on iterative solutions of a special partial differential equation or on marching algorithms involving a polygonization of the surface. We propose a novel method for a non‐iterative approximation of an SDF and its derivatives in a vicinity of a manifold. We use a second‐order algebraic fitting scheme to ensure high accuracy of the approximation. The manifold is defined (explicitly or implicitly) as an isosurface of a given volumetric scalar field. The field may be given at a set of irregular and unstructured samples. Stability and reliability of the SDF generation is achieved by a proper scaling of weights for the Moving Least Squares approximation, accurate choice of neighbors, and appropriate handling of degenerate cases. We obtain the solution in an explicit form, such that no iterative solving is necessary, which makes our approach fast.  相似文献   

5.
This paper presents a digital storytelling approach that generates automatic animations for time‐varying data visualization. Our approach simulates the composition and transition of storytelling techniques and synthesizes animations to describe various event features. Specifically, we analyze information related to a given event and abstract it as an event graph, which represents data features as nodes and event relationships as links. This graph embeds a tree‐like hierarchical structure which encodes data features at different scales. Next, narrative structures are built by exploring starting nodes and suitable search strategies in this graph. Different stages of narrative structures are considered in our automatic rendering parameter decision process to generate animations as digital stories. We integrate this animation generation approach into an interactive exploration process of time‐varying data, so that more comprehensive information can be provided in a timely fashion. We demonstrate with a storm surge application that our approach allows semantic visualization of time‐varying data and easy animation generation for users without special knowledge about the underlying visualization techniques.  相似文献   

6.
Environment‐mapped rendering of Lambertian isotropic surfaces is common, and a popular technique is to use a quadratic spherical harmonic expansion. This compact irradiance map representation is widely adopted in interactive applications like video games. However, many materials are anisotropic, and shading is determined by the local tangent direction, rather than the surface normal. Even for visualization and illustration, it is increasingly common to define a tangent vector field, and use anisotropic shading. In this paper, we extend spherical harmonic irradiance maps to anisotropic surfaces, replacing Lambertian reflectance with the diffuse term of the popular Kajiya‐Kay model. We show that there is a direct analogy, with the surface normal replaced by the tangent. Our main contribution is an analytic formula for the diffuse Kajiya‐Kay BRDF in terms of spherical harmonics; this derivation is more complicated than for the standard diffuse lobe. We show that the terms decay even more rapidly than for Lambertian reflectance, going as l–3, where l is the spherical harmonic order, and with only 6 terms (l = 0 and l = 2) capturing 99.8% of the energy. Existing code for irradiance environment maps can be trivially adapted for real‐time rendering with tangent irradiance maps. We also demonstrate an application to offline rendering of the diffuse component of fibers, using our formula as a control variate for Monte Carlo sampling.  相似文献   

7.
This paper presents a hybrid approach to multiple fluid simulation that can handle miscible and immiscible fluids, simultaneously. We combine distance functions and volume fractions to capture not only the discontinuous interface between immiscible fluids but also the smooth transition between miscible fluids. Our approach consists of four steps: velocity field computation, volume fraction advection, miscible fluid diffusion, and visualization. By providing a combining scheme between volume fractions and level set functions, we are able to take advantages of both representation schemes of fluids. From the system point of view, our work is the first approach to Eulerian grid‐based multiple fluid simulation including both miscible and immiscible fluids. From the technical point of view, our approach addresses the issues arising from variable density and viscosity together with material diffusion. We show that the effectiveness of our approach to handle multiple miscible and immiscible fluids through experiments.  相似文献   

8.
We propose a novel algorithm for construction of bounding volume hierarchies (BVHs) for multi‐core CPU architectures. The algorithm constructs the BVH by a divisive top‐down approach using a progressively refined cut of an existing auxiliary BVH. We propose a new strategy for refining the cut that significantly reduces the workload of individual steps of BVH construction. Additionally, we propose a new method for integrating spatial splits into the BVH construction algorithm. The auxiliary BVH is constructed using a very fast method such as LBVH based on Morton codes. We show that the method provides a very good trade‐off between the build time and ray tracing performance. We evaluated the method within the Embree ray tracing framework and show that it compares favorably with the Embree BVH builders regarding build time while maintaining comparable ray tracing speed.  相似文献   

9.
The efficiency of Monte Carlo algorithms for light transport simulation is directly related to their ability to importance‐sample the product of the illumination and reflectance in the rendering equation. Since the optimal sampling strategy would require knowledge about the transport solution itself, importance sampling most often follows only one of the known factors – BRDF or an approximation of the incident illumination. To address this issue, we propose to represent the illumination and the reflectance factors by the Gaussian mixture model (GMM), which we fit by using a combination of weighted expectation maximization and non‐linear optimization methods. The GMM representation then allows us to obtain the resulting product distribution for importance sampling on‐the‐fly at each scene point. For its efficient evaluation and sampling we preform an up‐front adaptive decimation of both factor mixtures. In comparison to state‐of‐the‐art sampling methods, we show that our product importance sampling can lead to significantly better convergence in scenes with complex illumination and reflectance.  相似文献   

10.
Dynamic Sampling and Rendering of Algebraic Point Set Surfaces   总被引:2,自引:0,他引:2  
Algebraic Point Set Surfaces (APSS) define a smooth surface from a set of points using local moving least‐squares (MLS) fitting of algebraic spheres. In this paper we first revisit the spherical fitting problem and provide a new, more generic solution that includes intuitive parameters for curvature control of the fitted spheres. As a second contribution we present a novel real‐time rendering system of such surfaces using a dynamic up‐sampling strategy combined with a conventional splatting algorithm for high quality rendering. Our approach also includes a new view dependent geometric error tailored to efficient and adaptive up‐sampling of the surface. One of the key features of our system is its high degree of flexibility that enables us to achieve high performance even for highly dynamic data or complex models by exploiting temporal coherence at the primitive level. We also address the issue of efficient spatial search data structures with respect to construction, access and GPU friendliness. Finally, we present an efficient parallel GPU implementation of the algorithms and search structures.  相似文献   

11.
Higher‐order finite element methods have emerged as an important discretization scheme for simulation. They are increasingly used in contemporary numerical solvers, generating a new class of data that must be analyzed by scientists and engineers. Currently available visualization tools for this type of data are either batch oriented or limited to certain cell types and polynomial degrees. Other approaches approximate higher‐order data by resampling resulting in trade‐offs in interactivity and quality. To overcome these limitations, we have developed a distributed visualization system which allows for interactive exploration of non‐conforming unstructured grids, resulting from space‐time discontinuous Galerkin simulations, in which each cell has its own higher‐order polynomial solution. Our system employs GPU‐based raycasting for direct volume rendering of complex grids which feature non‐convex, curvilinear cells with varying polynomial degree. Frequency‐based adaptive sampling accounts for the high variations along rays. For distribution across a GPU cluster, the initial object‐space partitioning is determined by cell characteristics like the polynomial degree and is adapted at runtime by a load balancing mechanism. The performance and utility of our system is evaluated for different aeroacoustic simulations involving the propagation of shock fronts.  相似文献   

12.
We present a fast reconstruction filtering method for images generated with Monte Carlo–based rendering techniques. Our approach specializes in reducing global illumination noise in the presence of depth‐of‐field effects at very low sampling rates and interactive frame rates. We employ edge‐aware filtering in the sample space to locally improve outgoing radiance of each sample. The improved samples are then distributed in the image plane using a fast, linear manifold‐based approach supporting very large circles of confusion. We evaluate our filter by applying it to several images containing noise caused by Monte Carlo–simulated global illumination, area light sources and depth of field. We show that our filter can efficiently denoise such images at interactive frame rates on current GPUs and with as few as 4–16 samples per pixel. Our method operates only on the colour and geometric sample information output of the initial rendering process. It does not make any assumptions on the underlying rendering technique and sampling strategy and can therefore be implemented completely as a post‐process filter.  相似文献   

13.
We present a novel and efficient technique to extract Lagrangian coherent structures in two‐dimensional time‐dependent vector fields. We show that this can be achieved by employing bifurcation line extraction in the space‐time representation of the vector field, and generating space‐time bifurcation manifolds therefrom. To show the utility and applicability of our approach, we provide an evaluation of existing extraction techniques for Lagrangian coherent structures, and compare them to our approach.  相似文献   

14.
We propose a unified rendering approach that jointly handles motion and defocus blur for transparent and opaque objects at interactive frame rates. Our key idea is to create a sampled representation of all parts of the scene geometry that are potentially visible at any point in time for the duration of a frame in an initial rasterization step. We store the resulting temporally‐varying fragments (t‐fragments) in a bounding volume hierarchy which is rebuild every frame using a fast spatial median construction algorithm. This makes our approach suitable for interactive applications with dynamic scenes and animations. Next, we perform spatial sampling to determine all t‐fragments that intersect with a specific viewing ray at any point in time. Viewing rays are sampled according to the lens uv‐sampling for depth‐of‐field effects. In a final temporal sampling step, we evaluate the predetermined viewing ray/t‐fragment intersections for one or multiple points in time. This allows us to incorporate all standard shading effects including transparency. We describe the overall framework, present our GPU implementation, and evaluate our rendering approach with respect to scalability, quality, and performance.  相似文献   

15.
In this paper we present a novel approach to simulate image formation for a wide range of real world lenses in the Monte Carlo ray tracing framework. Our approach sidesteps the overhead of tracing rays through a system of lenses and requires no tabulation. To this end we first improve the precision of polynomial optics to closely match ground‐truth ray tracing. Second, we show how the Jacobian of the optical system enables efficient importance sampling, which is crucial for difficult paths such as sampling the aperture which is hidden behind lenses on both sides. Our results show that this yields converged images significantly faster than previous methods and accurately renders complex lens systems with negligible overhead compared to simple models, e.g. the thin lens model. We demonstrate the practicality of our method by incorporating it into a bidirectional path tracing framework and show how it can provide information needed for sophisticated light transport algorithms.  相似文献   

16.
The visibility function in direct illumination describes the binary visibility over a light source, e.g., an environment map. Intuitively, the visibility is often strongly correlated between nearby locations in time and space, but exploiting this correlation without introducing noticeable errors is a hard problem. In this paper, we first study the statistical characteristics of the visibility function. Then, we propose a robust and unbiased method for using estimated visibility information to improve the quality of Monte Carlo evaluation of direct illumination. Our method is based on the theory of control variates, and it can be used on top of existing state‐of‐the‐art schemes for importance sampling. The visibility estimation is obtained by sparsely sampling and caching the 4D visibility field in a compact bitwise representation. In addition to Monte Carlo rendering, the stored visibility information can be used in a number of other applications, for example, ambient occlusion and lighting design.  相似文献   

17.
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch‐sensitive displays, our approach allows individuals to custom‐design glyphs (arrows, lines, etc.) that best reveal patterns of the underlying dataset. Interactive exploration of vector fields is facilitated through freedom of glyph placement, glyph density control, and animation. The custom glyphs can be applied individually to probe specific areas of the data but can also be applied in groups to explore larger regions of a vector field. Re‐positionable sources from which glyphs—animated according to the local vector field—continue to emerge are used to examine the vector field dynamically. The combination of these techniques results in an engaging visualization with which the user can rapidly explore and analyze varying types of 2D vector fields, using a virtually infinite number of custom‐designed glyphs.  相似文献   

18.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

19.
The efficient evaluation of visibility in a three‐dimensional scene is a longstanding problem in computer graphics. Visibility evaluations come in many different forms: figuring out what object is visible in a pixel; determining whether a point is visible to a light source; or evaluating the mutual visibility between 2 surface points. This paper provides a new, experimental view on visibility, based on a probabilistic evaluation of the visibility function. Instead of checking the visibility against all possible intervening geometry the visibility between 2 points is now evaluated by testing only a random subset of objects. The result is not a Boolean value that is either 0 or 1, but a numerical value that can even be negative. Because we use the visibility evaluation as part of the integrand in illumination computations, the probabilistic evaluation of visibility becomes part of the Monte Carlo procedure of estimating the illumination integral, and results in an unbiased computation of illumination values in the scene. Moreover, the number of intersections tests for any given ray is decreased, since only a random selection of geometric primitives is tested. Although probabilistic visibility is an experimental and new idea, we present a practical algorithm for direct illumination that uses the probabilistic nature of visibility evaluations.  相似文献   

20.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号