首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Interference is disruptive to the operation of wireless sensor networks (WSNs) in unlicensed bands as wireless systems proliferate on the spectrum. The design of a spectrum sharing scheme for WSNs to enable coexistence with geographically collocated heterogeneous wireless systems having multiple parallel interfering channels is a persistent challenge. In this context, interference identification and channel ranking in terms of spectrum access opportunities are addressed in this paper. The goal is to develop a low complexity channel ranking algorithm from channel energy measurements at sensors when a packet-reception-ratio to signal-to-interference-and-noise-ratio (PRR-SINR) interference model is unavailable at network initialization phase. The interference characterizing estimators, temporal occupancy and strength level of a channel, are proposed for interference identification. The effectiveness of the estimators is tested on a sensor platform at 2.4 GHz ISM band under interference from WLAN. Subsequently, the impact of the interference estimators on a channel quality from a receiver perspective is determined with a decision theoretic approach. The estimators are weighted according to their influence on the fitness of a channel and channel ranking is established. The proposed channel ranking achieves a significant gain over heuristic channel ranking (HCR) and gives an accurate interference profile of the channels.  相似文献   

3.
Wireless sensor networks have been more and more deployed for monitoring and controlling real environments. However, because of sensor nodes?? limitations, their radios are more susceptible to noise and interference than in other wireless technologies. These are critical factors in the rigorous industrial environment, whose effects may not be the same on all channels of a sensor network. In this paper, we present some experimental studies about the characteristics of IEEE 802.15.4 channels in ISM band. We are particularly interested in the differences of implementing wireless sensor networks in academic and industrial environments. A common problem of wireless sensor network implementations is that most of them are purely academic or initially prepared in laboratory. Our study shows that it is very difficult to predict the quality and stability of the different channels in sensor networks, as the environment conditions greatly influence the network performance. Empirical approaches are suitable methods for choosing the appropriate channels to deploy WSNs in noisy environments. We conduct several tests in both laboratory and in a real world environment, particularly in an oil refinery as this is our case study in the context of the FP7 GINSENG project (Ginseng 2010).  相似文献   

4.
Multihop infrastructure wireless mesh networks offer increased reliability, coverage, and reduced equipment costs over their single-hop counterpart, wireless local area networks. Equipping wireless routers with multiple radios further improves the capacity by transmitting over multiple radios simultaneously using orthogonal channels. Efficient channel assignment and routing is essential for throughput optimization of mesh clients. Efficient channel assignment schemes can greatly relieve the interference effect of close-by transmissions; effective routing schemes can alleviate potential congestion on any gateways to the Internet, thereby improving per-client throughput. Unlike previous heuristic approaches, we mathematically formulate the joint channel assignment and routing problem, taking into account the interference constraints, the number of channels in the network, and the number of radios available at each mesh router. We then use this formulation to develop a solution for our problem that optimizes the overall network throughput subject to fairness constraints on allocation of scarce wireless capacity among mobile clients. We show that the performance of our algorithms is within a constant factor of that of any optimal algorithm for the joint channel assignment and routing problem. Our evaluation demonstrates that our algorithm can effectively exploit the increased number of channels and radios, and it performs much better than the theoretical worst case bounds  相似文献   

5.
In traditional wireless sensor network (WSN) applications, energy efficiency may be considered to be the most important concern whereas utilizing bandwidth and maximizing throughput are of secondary importance. However, recent applications, such as structural health monitoring, require high amounts of data to be collected at a faster rate. We present a multi-channel MAC protocol, MC-LMAC, designed with the objective of maximizing the throughput of WSNs by coordinating transmissions over multiple frequency channels. MC-LMAC takes advantage of interference and contention-free parallel transmissions on different channels. It is based on scheduled access which eases the coordination of nodes, dynamically switching their interfaces between channels and makes the protocol operate effectively with no collisions during peak traffic. Time is slotted and each node is assigned the control over a time slot to transmit on a particular channel. We analyze the performance of MC-LMAC with extensive simulations in Glomosim. MC-LMAC exhibits significant bandwidth utilization and high throughput while ensuring an energy-efficient operation. Moreover, MC-LMAC outperforms the contention-based multi-channel MMSN protocol, a cluster-based channel assignment method, and the single-channel CSMA in terms of data delivery ratio and throughput for high data rate, moderate-size networks of 100 nodes at different densities.  相似文献   

6.
With recent advances in wireless networking and in low‐power sensor technology, wireless sensor networks (WSNs) have taken significant roles in various applications. Whereas some WSNs only require minimal bandwidth, newer applications operate with a noticeably larger amount of data. One way to deal with these applications is to maximize the available capacity by utilizing multiple wireless channels. We propose DynaChannAl, a distributed dynamic wireless channel allocation algorithm that effectively distributes nodes to multiple wireless channels in WSNs. Specifically, DynaChannAl targets applications where mobile nodes connect to preexisting wireless backbones and takes the expected end‐to‐end queuing delay as its core metric. We used the link quality indicator values provided by 802.15.4 radios to whitelist high‐quality links and evaluate these links with the aggregated queuing latency, making it useful for applications that require minimal end‐to‐end delay (i.e., health care). DynaChannAl is a lightweight and adoptable scheme that can be incorporated easily with predeveloped systems. As the first study to consider end‐to‐end latency as the core metric for channel allocation in WSNs, we evaluate DynaChannAl on a 45 node test bed and show that DynaChannAl successfully distributes source nodes to different channels and enables them to select channels and links that minimizes the end‐to‐end latency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The wireless mesh network is a new emerging broadband technology providing the last-mile Internet access for mobile users by exploiting the advantage of multiple radios and multiple channels. The throughput improvement of the network relies heavily on the utilizing the orthogonal channels. However, an improper channel assignment scheme may lead to network partition or links failure. In this paper we consider the assignment strategy with topology preservation by organizing the mesh nodes with available channels, and aim at minimizing the co-channel interference in the network. The channel assignment with the topology preservation is proved to be NP-hard and to find the optimized solution in polynomial time is impossible. We have formulated a channel assignment algorithm named as DPSO-CA which is based on the discrete particle swarm optimization and can be used to find the approximate optimized solution. We have shown that our algorithm can be easily extended to the case with uneven traffic load in the network. The impact of radio utilization during the channel assignment process is discussed too. Extensive simulation results have demonstrated that our algorithm has good performance in both dense and sparse networks compared with related works.  相似文献   

8.
Channel assignment in multi-channel multi-radio wireless networks poses a significant challenge due to scarcity of number of channels available in the wireless spectrum. Further, additional care has to be taken to consider the interference characteristics of the nodes in the network especially when nodes are in different collision domains. This work views the problem of channel assignment in multi-channel multi-radio networks with multiple collision domains as a non-cooperative game where the objective of the players is to maximize their individual utility by minimizing its interference. Necessary and sufficient conditions are derived for the channel assignment to be a Nash Equilibrium (NE) and efficiency of the NE is analyzed by deriving the lower bound of the price of anarchy of this game. A new fairness measure in multiple collision domain context is proposed and necessary and sufficient conditions for NE outcomes to be fair are derived. The equilibrium conditions are then applied to solve the channel assignment problem by proposing three algorithms, based on perfect/imperfect information, which rely on explicit communication between the players for arriving at an NE. A no-regret learning algorithm known as Freund and Schapire Informed algorithm, which has an additional advantage of low overhead in terms of information exchange, is proposed and its convergence to the stabilizing outcomes is studied. New performance metrics are proposed and extensive simulations are done using Matlab to obtain a thorough understanding of the performance of these algorithms on various topologies with respect to these metrics. It was observed that the algorithms proposed were able to achieve good convergence to NE resulting in efficient channel assignment strategies.  相似文献   

9.
Use of multiple orthogonal channels can significantly improve network throughput of multi-hop wireless mesh networks (WMNs). In these WMNs where multiple channels are available, channel assignment is done either in a centralized manner, which unfortunately shows a poor scalability with respect to the increase of network size, or in a distributed manner, where at least one channel has to be dedicated for exchanging necessary control messages or time synchronization has to be utilized for managing the duration of data packet transmission, causing excessive system overhead and waste of bandwidth resource. In this paper, we first formulate multi-channel assignment as a NP-hard optimization problem. Then a distributed, heuristic temporal-spatial multi-channel assignment and routing scheme is proposed, assuming every wireless node in the network is equipped with a single-radio interface. Here the gateway node is set to use all the channels sequentially in a round-robin fashion. This temporal scheme ensures all the nodes that need to directly communicate with the gateway node shall have a fair access to it. For those non-gateway nodes, a spatial scheme where channels are assigned based on their neighbors’ channel usage is adopted to exploit parallel communications and avoid channel interference among nodes. Furthermore, since the routing factors, including channel usage of neighbor nodes, node hop count, node memory size, and node communication history, are all considered along with the channel assignment, network performance, measured by packet delivery latency, channel usage ratio, and memory usage ratio, tends to be considerably enhanced. The simulation results have confirmed that, compared with a couple of well-known multi-channel assignment schemes, such as LCM [21] and ROMA [15], the proposed scheme shows substantial improvement in network throughput with a very modest collision level. In addition, the proposed scheme is highly scalable as the algorithm complexity is only linearly dependent on the total number of channels that are available in the network and the number of neighbors that a network node directly connects to.  相似文献   

10.
该文根据无线Mesh网络流量呈现树状拓扑汇聚的特点提出基于拓扑分割的信道分配策略。依据无线干扰对不同链路的影响程度,把无线干扰分类为有确定方向的纵向干扰和横向干扰;提出沿着纵向干扰方向逐跳分割网络拓扑算法;提出最少信道隔离纵向干扰和为吞吐量最小的子拓扑增加信道的子拓扑间信道分配策略;提出横向干扰分块的子拓扑内信道使用方法;理论分析子拓扑内的冲突域及网络性能瓶颈,仿真研究子拓扑的吞吐性能及信道分配顺序。仿真结果表明,隔离纵向干扰和增加信道的分配策略能够有效保证和提升网络吞吐量,横向干扰分块的方法优于802.11s中定义的公共信道框架多信道机制。  相似文献   

11.
Multicast can enhance the performance of wireless mesh networks (WMNs) effectively, which has attracted great attentions in recent years. However, multicast communication in WMNs requires efficient channel assignment strategy to reduce the total network interference and maximize the network throughput. In this paper, the concept of local multicast is proposed to measure interference and solve hidden channel problem in multicast communication. Basing on the concept, we propose a channel assignment algorithm considering the interference of local multicast and forwarding weight of each node (LMFW). The algorithm fully considers partially overlapped channels and orthogonal channels to improve the network performance. Simulations show that the proposed algorithm can reduce interference and improve network capacity of WMNs.  相似文献   

12.
Next-generation wireless mobile communications will be driven by converged networks that integrate disparate technologies and services. The wireless mesh network is envisaged to be one of the key components in the converged networks of the future, providing flexible high- bandwidth wireless backhaul over large geographical areas. While single radio mesh nodes operating on a single channel suffer from capacity constraints, equipping mesh routers with multiple radios using multiple nonoverlap- ping channels can significantly alleviate the capacity problem and increase the aggregate bandwidth available to the network. However, the assignment of channels to the radio interfaces poses significant challenges. The goal of channel assignment algorithms in multiradio mesh networks is to minimize interference while improving the aggregate network capacity and maintaining the connectivity of the network. In this article we examine the unique constraints of channel assignment in wireless mesh networks and identify the key factors governing assignment schemes, with particular reference to interference, traffic patterns, and multipath connectivity. After presenting a taxonomy of existing channel assignment algorithms for WMNs, we describe a new channel assignment scheme called MesTiC, which incorporates the mesh traffic pattern together with connectivity issues in order to minimize interference in multi- radio mesh networks.  相似文献   

13.
Currently, working in the overcrowded shared unlicensed spectrum band, leads to a reduction in the quality of communications in wireless networks. This makes a considerable increase in packet loss caused by collisions that necessitates packets retransmissions. In the case of wireless sensor networks (WSN), a large amount of energy of sensor nodes will be wasted by these retransmissions. Cognitive radio technology makes it possible for sensor nodes, to opportunistically use licensed bands with better propagation characteristics and less congestion. In this paper a routing method for cognitive radio wireless sensor networks (CR-CEA) is presented, that is based on a cross-layer design that jointly considers route and spectrum selection. The CR-CEA method has two main phases: next hop selection and channel selection. The routing is performed hop-by-hop with local information and decisions, which are more compatible with sensor networks. Primary user activity and prevention from interference with them, is considered in all spectrum decisions. It uniformly distributes frequency channels between adjacent nodes, which lead to a local reduction in collision probability. This clearly affects energy consumption in all sensor nodes. In CR-CEA, route selection is energy-aware and a learning-based technique is used to reduce the packet delay in terms of hop-count. The simulation results reveal that by applying cognitive radio technology to WSNs and selecting a proper operating channel, we can consciously decrease collision probability. This saves energy of sensor nodes and improves the network lifetime.  相似文献   

14.
Cognitive radios have the ability to sense the radio spectrum environment and to switch dynamically to available frequency ranges. Mobile WiMax is an emerging wireless networking standard that could potentially benefit from cognitive radio technology. We develop a framework for applying cognitive radio technology to mobile WiMax networks to increase capacity and simplify network operations. In the proposed cognitive WiMax architecture, base stations are equipped with sensitive detectors and assign channels to subscriber stations dynamically based on spectrum availability. Power control is employed to increase frequency reuse in conjunction with spectrum sensing. Using computer simulation, we evaluate the performance of ldquocognitive channel assignmentrdquo relative to conventional dynamic channel assignment. Our numerical results show that cognitive radios can substantially increase the capacity of emerging WiMax networks by exploiting inherent spectrum hole opportunities. The key performance parameters determining the achievable capacity of cognitive WiMax networks are the detection and interference range, which depend in turn on characteristics of the radio propagation environment.  相似文献   

15.
Wireless Mesh Networks (WMN) with multiple radios and multiple channels are expected to resolve the capacity limitation problem of simpler wireless networks. However, optimal WMN channel assignment (CA) is NP complete, and it requires an optimal mapping of available channels to interfaces mounted over mesh routers. Acceptable solutions to CA must minimize network interference and maximize available network throughput. In this paper, we propose a CA solution called as cluster‐based channel assignment (CBCA). CBCA aims at minimizing co‐channel interference yet retaining topology through non‐default CA. Topology preservation is important because it avoids network partitions and is compatible with single‐interface routers in the network. A ‘non‐default’ CA solution is desired because it uses interfaces over different channels and reduces medium contention among neighbors. To the best of our knowledge, CBCA is a unique cluster‐based CA algorithm that addresses topology preservation using a non‐default channel approach. The main advantage of CBCA is it runs in a distributed manner by allowing cluster heads to perform CA independently. CBCA runs in three stages, where first the WMN nodes are partitioned into clusters. The second stage performs binding of interfaces to neighbors and third stage performs CA. The proposed algorithm improves over previous work because it retains network topology and minimizes network interference, which in turn improves available network throughput. Further, when compared with two other CBCA algorithms, CBCA provides better performance in terms of improved network interference, throughput, delay, and packet delivery ratios when tested upon network topologies with various network densities and traffic loads. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Throughput limitation of wireless networks imposes many practical problems as a result of wireless media broadcast nature. The solutions of the problem are mainly categorized in two groups; the use of multiple orthogonal channels and network coding (NC). The networks with multiple orthogonal channels and possibly multiple interfaces can mitigate co-channel interference among nodes. However, efficient assignment of channels to the available network interfaces is a major problem for network designers. Existing heuristic and theoretical work unanimously focused on joint design of channel assignment with the conventional transport/IP/MAC architecture. Furthermore, NC has been a prominent approach to improve the throughput of unicast traffic in wireless multi-hop networks through opportunistic NC. In this paper we seek a collaboration scheme for NC in multi-channel/interface wireless networks, i.e., the integration of NC, routing and channel assignment problem. First, we extend the NC for multiple unicast sessions to involve both COPE-type and a new proposed scheme named as Star-NC. Then, we propose an analytical framework that jointly optimizes the problem of routing, channel assignment and NC. Our theoretical formulation via a linear programming provides a method for finding source–destination routes and utilizing the best choices of different NC schemes to maximize the aggregate throughput. Through this LP, we propose a novel channel assignment algorithm that is aware of both coding opportunities and co-channel interference. Finally, we evaluate our model for various networks, traffic models, routing and coding strategies over coding-oblivious routing.  相似文献   

17.
无线传感器网络中,可用正交信道数目较少和噪声干扰问题制约着多信道MAC协议性能的提升,结合数据采集应用的特点,提出一种基于网络分割的多信道MAC协议。在最小化网络总干扰值的基础上,网络分割引入碰撞因子进一步优化子树结构、降低树内干扰。并利用基于图着色理论的分配策略为每棵子树分配一条高质量信道。仿真实验结果表明,该协议显著提高了网络吞吐量,并且大幅降低了传输延迟和分组丢失率。  相似文献   

18.
In this paper, we address the problem of joint channel assignment, link scheduling, and routing for throughput optimization in wireless networks with multiradios and multichannels. We mathematically formulate this problem by taking into account the interference, the number of available radios the set of usable channels, and other resource constraints at nodes. We also consider the possible combining of several consecutive channels into one so that a network interface card (NIC) can use the channel with larger range of frequencies and thus improve the channel capacity. Furthermore, we consider several interference models and assume a general yet practical network model in which two nodes may still not communicate directly even if one is within the transmission range of the other. We designed efficient algorithm for throughput (or fairness) optimization by finding flow routing, scheduling of transmissions, and dynamic channel assignment and combining. We show that the performance, fairness and throughput, achieved by our method is within a constant factor of the optimum. Our model also can deal with the situation when each node will charge a certain amount for relaying data to a neighboring node and each flow has a budget constraint. Our extensive evaluation shows that our algorithm can effectively exploit the number of channels and radios. In addition, it shows that combining multiple channels and assigning them to a single user at some time slots indeed increases the maximum throughput of the system compared to assigning a single channel.  相似文献   

19.
Design and Evaluation of Multichannel Multirate Wireless Networks   总被引:1,自引:0,他引:1  
In a multirate wireless network, low data rate nodes consume proportionately more channel resources than high data rate nodes, resulting in low overall network performance. The use of multiple non-overlapping frequency channels in multirate wireless networks can overcome the performance degradation by having nodes communicate on different channels based on their data rates. However, no effort has been invested to utilize the multiple channels for a multirate wireless network. In this paper, we introduce the Data Rate Adaptive Channel Assignment (DR-CA) algorithm for a multichannel multirate single-hop wireless network to provide higher network throughput and network efficiency. The main idea is to assign links having same or comparable data rates on the same channel to minimize the wastage of channel resources due to interference between high data links and low data rate links. We also design a new Intermediary Multichannel Layer (IML) which resides between network layer and link layer, at which we implement the DR-CA algorithm. The IML design requires no modifications to the underlying MAC layer and upper layers of the network stack. To evaluate the proposed algorithm we define new performance metrics—channel efficiency and network efficiency for a multichannel multirate wireless network. Using OPNET simulations, we show that the multichannel enhancement using our proposed algorithm provides significant performance improvement in terms of network throughput, channel efficiency, and network efficiency over existing approaches in multirate wireless networks. Under heavy load condition, the network efficiency using DR-CA algorithm reaches 90% of the maximum limit. To the best of our knowledge, this is the first work to utilize the benefits of multiple channels in the multirate wireless network environment.  相似文献   

20.
In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号