首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we present a compact transversal bandpass filter (BPF) with an extremely wide upper stopband and multiple transmission zeros (TZ). Three signal transmission paths with shorted stubs and open-coupled lines allow signal transmission from input port to output port. Two resonant modes can be excited simultaneously and managed easily for bandpass response. Eleven TZs are achieved via transmission path cancelation; an extremely wide upper stopband with an attenuation level better than –12 dB is achieved up to 11.7 f0, where f0 is the center frequency (CF). In addition, bandwidth and CF can be controlled by adjusting electrical lengths. For proof of concept, a wideband BPF centered at 1.04 GHz with 3 dB fractional bandwidths of 49.2% was designed, fabricated, and evaluated. The overall circuit measures 0.045λg × 0.117λg; good agreement was observed between the measured and simulated results.  相似文献   

2.
This paper presents a tri‐wideband bandpass filter (TWB‐BPF) with compact size, high band‐to‐band isolation, and multiple transmission zeros (TZs). The proposed TWB‐BPF is based on a multiple‐mode resonator (MMR), which is interpreted by the method of the even‐ and odd‐mode analysis technique. The MMR can excite 11 resonant modes, where the first two modes comprise the first passband, the next four modes form the second passband, and the last five modes are used to generate the third passband. In addition, 10 TZs are yielded to obtain high band‐to‐band isolation and wide stopband suppression characteristics up to 14.95fc1 (fc1 is the center frequency of the first passband). To verify the proposed filter, a TWB‐BPF with 3‐dB fractional bandwidths (FBWs) of 37.4%, 43.5%, and 40.4% is designed, fabricated, and measured.  相似文献   

3.

This paper presents a designing of dual-coated miniaturized metamaterial inspired quad band antenna for wireless standards with gain enhancement. Proposed design has compactness in size with electrical dimension of 0.239?×?0.351?×?0.0127 λ (30?×?44?×?1.6 mm3), at lower frequency of 2.39 GHz. The antenna consist a double printed slotted hexagonal shape radiating section with implementation of metamaterial rectangular split ring resonator. Antenna achieve quad bands for wireless standards WLAN (2.4/5.8 GHz), WiMAX (3.5 GHz), IEEE 802.11P (WAVE-5.9 GHz), ITU assigned X bands (7.25–7.75, 7.9–8.4 GHz) and satellite communication systems operating bands (C-band: 7.4–8.9 GHz and X-band: 8–10 GHz for satellite TV). An acceptable gain, stable radiation characteristics and good impedance matching are observed at all the resonant frequencies of the proposed structure. By application of proposed frequency selective surface an average enhancement of gain is about 4–5 dB over the operating band. Antenna fabricated and tested represent good agreement between the simulated and measured results.

  相似文献   

4.
介绍了一种基于低温共烧陶瓷(LTCC)工艺研制而成的小型化半集总高隔离度双工器.该双工器由L波段集总参数低通滤波器和X波段阶跃阻抗( SIR)分布参数带通滤波器组成.通过电磁仿真软件的仿真优化,实际加工滤波器的测试结果与软件仿真结果吻合.其中低通滤波器1dB截止频率为1.46GHz,带通滤波器中心频率为8.3GHz,1dB带宽为0.6GHz,通带内插损小于3.5dB,X波段端口对L波段端口隔离度大于60dB.该小型化LTCC双工器已成功应用于某毫米波战场识别系统的T/R组件中.  相似文献   

5.
Hayati  Mohsen  Zarghami  Sepehr  Shama  Farzin 《Wireless Networks》2021,27(2):1203-1213

In this paper, a new compact size microstrip lowpass filter (LPF) with a very sharp roll-off is presented to apply in the modern wireless networks. The proposed LPF is designed using the series main resonators with meandered lines based on inductor-capacitor (LC) equivalent circuit analysis. The main goal is to achieve maximum-sharp roll-off by maintaining a wide stopband bandwidth and high return loss (RL). The main resonator of the proposed filter is consisted of two meandered line hairpin resonators (MLHR), and a meandered line T-shaped resonator (MLTR). The designed suppressor is composed of two coupled radial stubs to create a wide stopband. Low return loss in the passband, which has been created by the main resonator, is resolved by the suppressor structure with high return loss. The measured results show a ??3 dB cut-off frequency of 1.93 GHz. The very sharp transition band starts at 1.93 to 1.97 GHz (from ??3 to ??20 dB). The stopband is from 1.97 to 19.9 GHz (with the suppression level of ??20 dB). Also, the total size of the proposed LPF is only 13.3?×?10.1 mm2.

  相似文献   

6.
This paper presents a novel microstrip quad-channel diplexer based on stub loaded U-shape resonators, which are coupled to the step impedance feed lines. The stubs are loaded inside the U-shape cells creating extra channels without increasing the size of diplexer. The proposed diplexer is miniaturized with an overall size of 0.029 λ g 2 . It operates at 1.67, 2.54, 3.45 and 4.57 GHz for GPS, wireless and WiMAX applications. Due to its narrowband channels, it is appropriate for the modern long-range communication systems, which are widely accepted by the industry. The proposed diplexer has high performance in terms of low insertion and return losses and wide stopband. The insertion losses at the resonance frequencies are 0.5, 0.38, 0.53 and 0.58 while the common port return losses are better than ? 20 dB at all channels. In order to verify the simulation results, we fabricated and measured the designed diplexer. A good agreement between both results is obtained.  相似文献   

7.
In this article, an ultra wideband bandpass filter using the dumbbell-etched stepped impedance resonator (SIR) is presented. The filter consists of a dumbbell-etched SIR with an impedance ratio K?>?1 and the enhanced coupled input/output lines. The SIR is folded into a dumbbell shape to achieve a smaller circuit size than the filter with conventional SIR. The bandwidth can be analysed using the image-parameter method to obtain the proper dimension of the coupled lines and verified using electromagnetic simulation. The measured 3?dB fractional bandwidth of 110% and insertion loss |S 21| less than 3?dB over the entire passband are achieved.  相似文献   

8.
A novel compact dual-band bandpass filter based on mixed coupling of the hybrid quasi-lumped resonator is proposed. The filter is composed of two independent signal paths, each can generate one passband with two identical hybrid quasi-lumped resonators. The proposal combines the mixed electric and magnetic coupling technology with this novel resonator in the filter design. Analysis of the filter has been done with the equivalent circuit method. To validate the approach, a dual-band bandpass filter operating at 2.4/5.2 GHz has been fabricated. Both passbands were realised with mixed coupling. An additional transmission zero is generated at either passband. Final fabricated filter has good band skirt, low insertion loss and good out-of-band performance. Reasonable agreement is found between the calculated, simulated and measured results. The implementation area is 0.21λg × 0.12λg.  相似文献   

9.
This letter presents a low-power active bandpass filter (BPF) at K-band fabricated by the standard 0.18 mum 1P6M CMOS technology. The proposed filter is evolved from the conventional half-wavelength resonator filter, using the complementary-conducting-strip transmission line (CCS TL) as the half-wavelength resonator. Furthermore, the complementary MOS cross-couple pair is proposed as a form of current-reuse scheme for achieving low-power consumption and high Q-factor simultaneously. The simulated results indicate that the Q-factor of the proposed half-wavelength resonator can be boosted from 9 to 513 at 25.65 GHz compared with the resonator enhanced by the nMOS cross-couple pair to Q-factor of merely 43 under the same power consumption. The proposed active BPF of order two occupies the chip area of 360 mum times 360 mum without contact pads. The measured results show that the center frequency of the active BPF is 22.70 GHz and a bandwidth of 1.68 GHz (7.39 %). The measured P1 dB and noise figure at 22.70 GHz are -7.65 dBm and 14.05 dB, respectively. There is a 56.84 dB suppression between the fundamental tone and the second harmonic when the input power is -11.26 dBm. While showing 0 dB loss and some residual gain, the active BPF consumes 2.0 mA at 1.65 V supply voltage with maximum of 0.15 dB insertion loss and 9.96 dB return loss at pass band.  相似文献   

10.
A new 60 GHz fourth-order cross-coupled bandpass filter using a step- impedance-resonator (SIR) miniaturised open-loop resonator and the miniaturised-hairpin (MH) resonator was designed and fabricated on 0.13 mum bulk CMOS. It has 8.5 GHz (58-66.5 GHz) bandwidth, 5.9 dB insertion loss, and better than 10 dB return loss over the whole passband, and exhibits high selectivity and a compact size of 714.9 times 484 mum (0.346 mm ). This filter is the first reported cross-coupled filter above 40 GHz on CMOS.  相似文献   

11.

The article investigates the performance of planar and compact CPW-fed microstrip patch antenna that offers 10 dB impedance bandwidth over the wide frequency range between 2.59 and 7.61 GHz. The parametric analysis of various design variables is included to acquire the final design of proposed antenna. The prototype exemplary of designed antenna is experimentally tested to obtain the return loss, VSWR, radiation response and gain characteristics. The close agreement is acquired between simulated and experimental results.The projected antenna has compact size of 0.61λ0 × 0.44λ0 × 0.027λ0 mm3 and offers a 10 dB wide impedance bandwidth of 5.02 GHz. Thus, it may be considered suitable for variety of wireless applications including WLAN, Wi-MAX, fixed satellite services, wireless point-to-point applications etc.

  相似文献   

12.
A miniaturized dual-band bandpass filter (BPF) using stepped impedance resonator (SIR) and defected ground structure (DGS) is presented. In order to get two desired passbands, two different transmission paths and source–load cross coupling have been implemented. One path is the SIR, and the other is the DGS. Meanwhile, it is easy to obtain good frequency selectivity by introducing several transmission zeros. The coupling scheme and current distributions are applied to demonstrate the flexible design approach. A dual-band BPF is designed, simulated, and fabricated to demonstrate the performance of the proposed dual-band filter. The measured results show that the fabricated dual-band BPF has two passbands centered at 2.41 and 3.52 GHz with the fractional bandwidth of 5.8 and 7.7%, respectively. The measured insertion loss is about 2 dB and 2.2 dB at the lower and upper passbands. The measured results show good agreement with the simulated ones.  相似文献   

13.
A miniaturized wideband band-pass filter with a 3-dB fractional bandwidth of 109.3% (1.53 GHz to 5.22 GHz), high out-of-band attenuation greater than 25 dB, and wide upper stopband up to 14 GHz is proposed. The design consists of a dual-composite right/left handed resonator, embedded open-circuited stub, and a pair of quarter-wavelength short-circuited stubs. These elements are coupled in the near distance to form a miniature filter with a compact occupied area of 0.21 λ g × 0.19 λ g (≈ 0.013 cm2). The optimized filter has multi-transmission poles in the passband, substantially improving the return loss and insertion loss characteristics. The behavior of the passband and stopband is verified against the results of a lumped element model and matrix analysis with a full-wave moment-based analysis and actual measurements. The results of this verification and a comparison with the performance of filters in other references indicate that the proposed filter is very efficient and applicable to compact microwave systems.  相似文献   

14.
In this paper, a novel compact wide-band bandpass filter (BPF) with a wide frequency range is presented. This filter consisting of a multi-mode resonator (MMR) and four metamaterial unit-cells benefits from a very compact size. Unit-cells based on a complementary spiral resonator (CSR) including a metallic via, improve both upper and lower stopband rejection and compensate the insertion loss (I.L) within the passband altogether. This wide-band filter presents a 3-dB bandwidth of 7.7 GHz, ranging from 3 GHz to 10.7 GHz and the Insertion loss is less than 0.7 dB over the passband. The measured results are in good agreement with both the full-wave electromagnetic simulation and the proposed circuit model results. The dimension of the fabricated filter is 0.128 λ × 0.1 λ (i.e., 5.6 × 4.4 mm2). This filter is considerably compact compared to the other wide-band bandpass filters with the same substrate.  相似文献   

15.
Compact dual-band bandpass filter (BPF) for the 5th generation mobile communication technology (5G) radio frequency (RF) front-end applications was presented based on multilayer stepped impedance resonators (SIRs). The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros (TZs) near the passband edges by the quarter-wavelength tri-section SIRs. The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm ×5.0 mm ×1.2 mm. The measured two passbands of themultilayer dual-band SIR BPF are 3.3 GHz -3.5 GHz and 4.8 GHz -5.0 GHz with insertion loss (IL) less than 2 dB respectively. Both measured and simulated results suggest that it is a possible candidate for the application of 5G RF front-end at sub-6 GHz frequency band.  相似文献   

16.
Two novel planar slotted-antennas (PSAs) are presented that exhibit good radiation characteristics at the UHF–SHF bands. The proposed antennas are constructed using metamaterial unit-cells constituted from capacitive slots etched in the radiating patch and grounded spiral shaped inductive stubs. The proposed PSA design is fabricated on a commercially available dielectric substrate, i.e. Rogers RO4003 with permittivity of 3.38 and thickness of 1.6 mm. The first PSA comprising five symmetrical unit-cells of slot–inductor–slot configuration operates over a wide bandwidth extending from 1 to 4.2 GHz with a peak gain of 1.5 dBi and efficiency of 35 % at 2 GHz. The second PSA consists of ten asymmetrical unit-cells of slot–inductor configuration on the same size of substrate as the first PSA, enhances the antenna gain by 2 dB and efficiency by 25 % and operates over 0.75–4.5 GHz. The asymmetrical unit-cell effectively increases the aperture size of the antenna without comprising its size. The electrical size of the antenna is 0.083λ0 × 0.033λ0 × 0.005λ0, where free-space wavelength (λ0) is 1 GHz.  相似文献   

17.
This paper presents a novel microstrip diplexer constructed by integrating the engraved semi-patch cells. It operates at 1.8 GHz for global system for mobile communication (GSM) and 2.4 GHz for wireless local area network (WLAN). The introduced structure is well miniaturized so that it has a compact size of 0.022 λg2. The others advantages of the proposed diplexer are the low insertion losses less than 0.16 dB, good in-band channel isolation higher than 34 dB and two wide fractional bandwidths. Moreover, 1st, 2nd and 3rd harmonics are attenuated with the maximum level of −20 dB. A harmonic attenuation method is presented based on analyzing the resonance modes. In order to verify the simulation results, the designed diplexer is fabricated and measured. The simulation and measurement results are in a good agreement.  相似文献   

18.

This paper presents a low profile Single-layer Modified Jerusalem Cross Frequency Selective Surface (SMJC FSS) which functions as a band-stop filter to shield the 2.45 GHz Industrial, Scientific and Medical (ISM) band with a unit cell size of 0.249λg × 0.249λg × 0.027λg. Compared to JC FSS, 50% size reduction is achieved by the effect of capacitive and inductive loading. The proposed FSS exhibits a fractional bandwidth of 14.69% and fractional bandwidth dimension ratio (FBDR) of 8775.4, which is one of the highest among the single layer FSS. The Koch curve inspired fractal monopole antenna is backed by 5?×?5 FSS array, which contributes enhanced gain and fractional bandwidth of 6.28 dB and 23.75% respectively and has a net dimension of 75 × 75mm ×31.2 mm. The specific absorption rate (SAR) is analyzed on human arm model where proposed antenna attains 0.183 W/Kg, which makes it appropriate for the application of body area communication. The measured results agree well with the simulated results and hence it is validated for wireless personal area communications in the ISM band at 2.45 GHz.

  相似文献   

19.
In this letter, we present a compact ultra-wideband bandpass filter (BPF) with a notch band in the BPF performance by using an embedded open-circuited stub structure. The filter mainly consists of conventional stepped impedance resonator (SIR) as the multiple-mode resonator and two enhanced coupled input/output lines. The bandwidth can be analyzed by using the image-parameter method to obtain the proper dimension of the coupled lines and verified by using electromagnetic (EM) simulation. The embedded open-circuited stub structure in the SIR is used to produce a narrow notched band at 5.8 GHz, which its frequency position and bandwidth can be tuned by its physical parameters. The measured 3 dB fractional bandwidth of 113.8% and narrow notched band with 25 dB rejection is achieved. Good agreement between the EM simulation and measurement is obtained.   相似文献   

20.
A novel and compact elliptic‐function bandpass filter is proposed in this letter. The techniques of slot etching and the addition of open stubs are applied to enhance the self‐inductance and self‐capacitance of hexagonal open‐loop resonators. Thus, size reduction and improved transmission performance are obtained. Compared to the performance of the conventional design, the central frequency and insertion loss are reduced by 28% and 3.1 dB, respectively. Measurements show that the proposed filter has a fraction bandwidth of 23% at the central frequency of 1.84 GHz, and its insertion loss in the passband is less than ?1.5 dB. The bandpass filter occupies only 12 mm×21.2 mm (approximately 0.24λg×0.14λg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号