首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low power CMOS voltage reference with process compensation is presented in TSMC 0.18-μm standard CMOS technology. Detailed analysis of the process compensation technique is discussed. The circuit is simulated with Spectre. Simulation results show that, without any trimming procedure, the output voltage achieves a maximum deviation of 0.35 % across different process corners. The temperature coefficient of the proposed circuit is 12.7 ppm/°C in a temperature range from ?40 to 85 °C and the line sensitivity is 0.036 mV/V with a supply voltage range from 1.2 to 2.5 V under typical condition. The maximum supply current is 390.4 nA at maximum supply voltage and ?40 °C. The power supply rejection ratio is ?68.3 dB at 100 Hz and 2.5 V without any filtering capacitor.  相似文献   

2.
CMOS折叠预处理电路的带宽和失调是限制折叠内插式ADC的动态和静态特性的主要原因之一。所设计的ADC采用一种双采样保持电路降低了对折叠器的带宽要求,获得了优良的动态特性;提出一种改进结构的全平衡折叠电路,降低了折叠器本身的失调,同时改善了ADC的静态和动态特性。仿真结果表明:在输入信号频率74.1MHz、采样频率150M时SNDR为37.2dB;INL、DNL分别为0.5/0.6LSB。芯片采用1stSilicon0.25μmCMOS工艺流片,并用于10/100Base-TPHY芯片中,测试结果表明,该ADC能正常工作,功耗为135mW,芯片有效面积0.4mm2。  相似文献   

3.
This paper presents the design of low noise amplifier and mixer (LIXER) circuit for wireless receiver front ends using 65 nm CMOS technology. The circuit is implemented with CMOS transistors and uses 65 nm CMOS process. Proposed LIXER circuit achieves a maximum gain of 25 dB and DSB noise figure of 3.5 dB. In the given circuit, current shunt paths had created by using LC tank circuit with transistors Q5 and Q6. By using the creative current recycle technique circuit consumes 3.6 mW power with 1.2 V power supply. The operating frequency of the proposed structure is 2.4 GHz with 25 dB conversion gain and ?13 dBm IIP3. The operating of the receiver front end is 2.4 GHz is used for IEEE 802.11a WLAN, Bluetooth, and ZigBee applications.  相似文献   

4.
1 Introduction Now ,mostoftheLNAinRFreceiversarede signedwithGaAsorbipolartechnologies,whichhavealargepowerdissipationandunfavorableper formanceofintegration .CMOStechnologiestakeincreasinglyadvantagesoftechnologyadvances,whichhaveverylow powerconsumptionandmakepossibletheintegrationofcompletecommunicationsystems[1 ] .Forexample ,mobilecommunicationsystemreceiversemployextensivedigitalsignalpro cessingtoperformacquisition ,tracking ,anddecod ingfunctions.TheuseofCMOStechnologiesforimpl…  相似文献   

5.
This paper describes a four-quadrant analogue multiplier circuit using a low-voltage power supply. It comprises two voltage/current adders and a basic multiplier. Its major advantages over other low-voltage multipliers are that it can operate on either a single power supply or two power supplies, and that its output can be the product of two signal currents, the product of two signal voltages, or the product of a signal current and a signal voltage. Second-order effects were analysed and the simulated results revealed that: (1) for a two-power supply voltage of 2?V, the total harmonic distortion is about 1%, whereas the input voltage is 0.4?VP–P, the power dissipation is about 0.4?mW and the ?3?dB bandwidth is more than 55?MHz; (2) for a single-power supply voltage of 2?V, the total harmonic distortion is about 1%, whereas the input voltage is 0.4?VP–P, the power dissipation is about 0.2?mW and the ?3?dB bandwidth is more than 55?MHz. Experimental results are provided to confirm the operation of the circuit.  相似文献   

6.
基于0.35μm CMOS工艺,设计一种不带电阻的低功耗基准电压源,该基准源工作电压范围1.2 V~3.6 V.在3.6 V和室温时测量最大的电源电流为130 nA.在-20℃~100℃温度范围内,该基准电压温度系数为7.5×10-6/℃.在1.2 V~3.6 V电源电压范围内,线灵敏度为40×10-6/V,且在100 Hz时电源抑制比为-50 dB.该基准电压源适合在一些例如移动设备、植入式医疗设备和智能传感器网络等节能集成电路上应用.  相似文献   

7.
唐宁  赵荣建  李书馨 《微电子学》2012,42(2):246-249,269
带隙基准源是开关电源的重要组成部分。在对传统带隙基准源电路进行分析的基础上,结合曲率校正技术、高增益反馈技术和缓冲隔离技术,提出了一款应用于开关电源的高电源抑制比、低温漂系数和多基准输出新型基准源电路。基于0.5μm CMOS工艺,对电路进行仿真。结果表明,在-25℃~150℃范围内和典型(TT)工艺角下,设计的基准源温漂系数小于3×10-6/℃,PSRR为-78dB,可产生3V,1.2V,1V,0.2V四个基准输出电压。  相似文献   

8.
A wide bandwidth continuous time sigma delta analog-to-digital conversion is implemented in 130?nm process. The circuit is targeted for wide bandwidth applications such as video or wireless base-stations. The third-order continuous time sigma delta modulator comprises a third-order RC operational-amplifier-based loop filter and 3-bit internal quantizer operated at 512?MHz clock frequency. To reduce the clock jitter sensitivity, nonreturn-to-zero DAC pulse shaping is used. The excess loop delay is set to half the sampling period of the quantizer, and the degradation of modulator stability due to excess loop delay is avoided with this architecture. The sigma delta ADC achieves a 60?dB SNR and a 59.3?dB signal-to-noise-plus-distortion ratio over a 16?MHz signal band at an oversampling ratio of 16. The power consumption of the continuous time sigma delta modulator is 22 mW from the 1.2?V supply.  相似文献   

9.
A stereo sigma delta A/D-converter for audio applications is presented. In this converter, two identical cascaded fourth-order sigma-delta modulators and a sophisticated multistage linear-phase FIR decimation filter with oversampling ratio of 64 are implemented on the same die. The analog part is designed to operate at a low voltage with a low power consumption. Techniques to achieve simultaneously a high performance and a low power consumption are discussed in details. The minimum stopband attenuation of the decimator is more than 120 dB and the passband ripple of the overall converter is less than 0.0003 dB. The first decimation stage is a special tapped comb filter, whereas the remaining stages are realized without general multipliers by simultaneously implementing all the filter coefficients by using special bit-serial networks. For the integrated overall stereo converter, the power consumption and the signal-to-noise ratio are 180 mW and 97 dB (85 mW and 95 dB) for a 5 V (3 V) power supply. The circuit die area is only 4.7 mm×5.5 mm using a 1.2 μm double-poly BiCMOS process  相似文献   

10.
A 13-b 5-MHz pipelined analog-to-digital converter (ADC) was designed with the goal of minimizing power dissipation. Power was reduced by using a high swing residue amplifier and by optimizing the per stage resolution. The prototype device fabricated in a 1.2 μm CMOS process displayed 80.1 dB peak signal-to-noise plus distortion ratio (SNDR) and 82.9 dB dynamic range. Integral nonlinearity (INL) is 0.8 least significant bits (LSB), and differential nonlinearity (DNL) is 0.3 LSB for a 100 kHz input. The circuit dissipates 166 mW on a 5 V supply  相似文献   

11.
设计了一个5位330 MS/s的异步数字斜坡模数转换器(ADC)。采用中芯国际55 nm工艺和Cadence Virtuoso软件,对电路进行设计和仿真。供电电源为1.2 V,改进后的延迟单元将延迟时间缩短到50 ps。另外,该电路中的比较器采用自动关闭方式,节省了功耗。输入电压峰峰值为0.4 V时,仿真得到信噪失真比(SNDR)为28.19 dB,有效位(ENOB)为4.39位,无杂散噪声动态范围(SFDR)为35.87 dB,信噪比(SNR)为31.47 dB。  相似文献   

12.
Ellinger  F. 《Electronics letters》2004,40(22):1417-1419
A 26-34 GHz fully integrated CMOS down mixer is presented. At 30 GHz RF frequency and 2.5 GHz IF frequency, 50 /spl Omega/ terminations, 5 dBm LO and 1.2 V/spl times/17 mA supply power, the circuit yields a conversion loss of 2.6 dB, an SSB NF of 13.5 dB and an IIP3 of 0.5 dBm.  相似文献   

13.
A fourth-order switched-capacitor bandpassΣ△modulator is presented for digital intermediatefrequency (IF) receivers.The circuit operates at a sampling frequency of 100 MHz.The transfer function of the resonator considering nonidealities of the operational amplifier is proposed so as to optimize the performance of resonators.The modulator is implemented in a 0.13-μm standard CMOS process.The measurement shows that the signal-to-noise-and-distortion ratio and dynamic range achieve 68 dB and 75 dB,respectively,over a bandwidth of 200 kHz centered at 25 MHz,and the power dissipation is 8.2 mW at a 1.2 V supply.  相似文献   

14.
This paper presents a 1.2 V 10-bit 5MS/s low power cyclic analog-to-digital converter (ADC). The strategy to minimize the power adopts the double-sampling technique. At the front-end, a timing-skew-insensitive double-sampled Miller-capacitance-based sample-and-hold circuit (S/H) is employed to enhance the dynamic performance of the cyclic ADC. Double sampling technique is also applied to multiplying digital-to-analog converter (MDAC). This scheme provides a better power efficiency for the proposed cyclic ADC. Furthermore, bootstrapped switch is used to achieve rail-to-rail signal swing at low-voltage power supply. The prototype ADC, fabricated in TSMC 0.18 μm CMOS 1P6 M process, achieves DNL and INL of 0.32LSB and 0.45LSB respectively, while SFDR is 69.1 dB and SNDR is 58.6 dB at an input frequency of 600 kHz. Operating at 5MS/s sampling rate under a single 1.2 V power supply, the power consumption is 1.68 mW.  相似文献   

15.
A millimeter-wave multiphase voltage-controlled oscillator (VCO) is presented. In order to facilitate high-frequency oscillation and to minimize the phase error caused by the device and layout mismatch, a rotary traveling-wave topology based on transmission lines with inductive loading is employed for the circuit implementation. Using a 0.18-mum CMOS process, the fabricated VCO provides half- quadrature output phases at 32 GHz. The measured output power and phase noise at 1-MHz offset are -9 dBm and -108 dBc/Hz, respectively. Operated at a supply voltage of 1.2 V, the power consumption of the proposed circuit is 54 mW.  相似文献   

16.
A high-performance current amplifier is proposed which is based on a folded-cascode transresistance amplifier and a low-distortion class AB current output stage. The loop gain of the transresistance amplifier exhibits a gain bandwidth product of 10 MHz and a DC gain as high as 100 dB which allows accurate closed-loop operations to be achieved. Despite the intrinsic low-linearity performance of current amplifiers with respect to their voltage amplifier counterpart, the proposed circuit provides an output current of 7 mA with a total harmonic distortion (THD) better than -55 dB while requiring only 200 μA of quiescent current for the output transistors. The circuit was fabricated in a 1.2 μm CMOS process, uses a 5 V power supply, and dissipates 4 mW  相似文献   

17.
一种改进型BiCMOS带隙基准源的仿真设计   总被引:1,自引:1,他引:0  
依据带隙基准原理,设计了一种基于90 nm BiCMOS工艺的改进型带隙基准源电路.该电路设置运算跨导放大器以实现低压工作,用共源-共栅MOS管提高电路的电源抑制比,并加设了新颖的启动电路.HSPICE仿真结果表明,在低于1.1 V的电源电压下,所设计的电路能稳定地工作,输出稳定的基准电压约为610 mV;在电源电压V_(DD)为1.2 v、温度27℃、频率为10 kHz以下时,电源噪声抑制比约为-45 dB;当温度为-40~120℃时,电路的温度系数约为11 × 10~(-6)℃,因此该基准源具有低工作电压、高电源抑制比、低温度系数等性能优势.  相似文献   

18.
A low‐power down‐sampling mixer in a low‐power digital 65 nm CMOS technology is presented. The mixer consumes only 830 µW at 1.2 V supply voltage by combining an NMOS and a PMOS mixer with cascade transistors at the output. The measured gain is (19 °1 dB) at frequencies between 100 MHz and 3 GHz. An IIP3 of ?5.9 dBm is achieved.  相似文献   

19.
吴蓉  张娅妮  荆丽 《半导体技术》2010,35(5):503-506
利用带隙电压基准的基本原理,结合自偏置共源共栅电流镜以及适当的启动电路,设计了一种新型基准电压源。获得了一个低温度系数、高电源抑制比的电压基准。通过对输出端添加运算放大器,把带隙基准电路产生的1.2 V电压提高到3.5 V,提高了芯片性能。用Cadence软件和CSMC的0.5μm CMOS工艺进行了仿真,结果表明,当温度在-20~+120℃,温度系数为9.3×10-6/℃,直流时的电源抑制比为-82 dB。该基准电压源能够满足开关电源管理芯片的使用要求,并取得了较好的效果。  相似文献   

20.
Novel high power supply rejection ratio (PSRR) high-order temperature-compensated subthreshold metal-oxide-semiconductor (MOS) bandgap reference (BGR) is proposed in Semiconductor Manufacturing International Corporation (SMIC) 0.13 μm complementary MOS (CMOS) process. By adopting subthreshold MOS field-effect transistors (MOSFETs) and the piecewise-curvature temperature-compensated technique, the output reference voltage's temperature performance of the subthreshold MOS BGR is effectively improved. The subthreshold MOS BGR achieves high PSRR performance by adopting the technique of pre-regulator. Simulation results show that the temperature coefficient (TC) of the subthreshold MOS BGR is 1.38×10?6/°C when temperature is changed from ?40 °C to 125 °C with a power supply voltage of 1.2 V. The subthreshold MOS BGR achieves the PSRR of ?104.54 dB, ?104.54 dB, ?104.5 dB, ?101.82 dB and ?79.92 dB at 10 Hz, 100 Hz, 1 kHz, 10 kHz and 100 kHz respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号