首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the state estimation for the systems under measurement noise whose mean and covariance change with Markov transition probabilities. The minimum variance estimate for the state involves consideration of a prohibitively large number of sequences, so that the usual computation method becomes impractical. In the algorithm proposed here, the estimate is calculated with a relatively small number of sequences sampled at random from the set of a large number of sequences. The average risk of the algorithm is shown to converge to the optimal average risk as the number of sampled sequences increases. An ideal sampling probability yielding a very fast convergence is found. The probability is approximated in a minimum mean squared sense by a probability according to which sequences can be sampled sequentially and with great ease. This policy of determination of sampling probability makes it possible to design practical and efficient algorithms. Digital simulation results show a good performance of the proposed algorithm.  相似文献   

2.
In this paper, we propose an optimal control technique for a class of continuous‐time nonlinear systems. The key idea of the proposed approach is to parametrize continuous state trajectories by sequences of a finite number of intermediate target states; namely, waypoint sequences. It is shown that the optimal control problem for transferring the state from one waypoint to the next is given an explicit‐form suboptimal solution, by means of linear approximation. Thus the original continuous‐time nonlinear control problem reduces to a finite‐dimensional optimization problem of waypoint sequences. Any efficient numerical optimization method, such as the interior‐reflection Newton method, can be applied to solve this optimization problem. Finally, we solve the optimal control problem for a simple nonlinear system example to illustrate the effectiveness of this approach. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
This paper proposes a successive approximation design approach of observer-based optimal tracking controllers for time-delay systems with external disturbances. To solve a two-point boundary value problem with time-delay and time-advance terms and obtain the optimal tracking control law, two sequences of vector differential equations are constructed first. Second, the convergence of the sequences of the vector differential equations is proved to guarantee the existence and uniqueness of the control law. Third, a design algorithm of the optimal tracking control law is presented and the physically realisable problem is addressed by designing a disturbance state observer and a reference input state observer. An example of an industrial electric heater is given to demonstrate the efficiency of the proposed approach.  相似文献   

4.
本文针对一类典型的注塑工业过程系统, 研究了注塑填充过程中产生的熔体流动速度最优跟踪控制问题, 提出了一种基于控制参数化的计算最优反馈控制器设计方法以实现注塑过程中熔融聚合物流动前沿位移的最优跟 踪控制, 进而达到改善注塑零件性能的高效生产目标. 首先, 面向注塑工艺复杂生产过程建立了动态过程系统数学 模型, 提出了注塑机内部熔融聚合物流动前沿位置的动态最优跟踪控制问题; 其次, 设计了一种多级反馈控制律, 通 过控制参数化方法将控制反馈核进行了参数化表示, 将控制器设计问题转化为一序列最优参数决策问题; 然后, 通 过状态灵敏度方程分析方法, 求解出了目标函数及约束条件关于决策变量参数梯度信息的显式表达式, 并基于所提 供的梯度信息结合序列二次规划算法进行了高效优化迭代求解; 最后, 通过实验仿真验证了本文所提出的最优反 馈控制器设计方法的可行性和有效性.  相似文献   

5.
电力系统状态向量估计是电力系统能量管理系统的重要组成部分;在电力系统实时监控中,传统的基于最小二乘法的状态向量估计方法,存在估计值与实际电力系统中的参数值相差较大的问题,基于此提出了一种适用于电力系统实时监测的有效状态估计模型;该模型采用了一种基于直角坐标系的加权最小二乘法,由一组与测量量和状态变量相关的非线性方程组描述,使用预测-校正迭代技术求解状态估计器模型;利用粒子群算法优化同步相量测量单元(phasor measurements unit,PMU)仪表的分配,增强了算法的有效性;该模型被应用于IEEE14总线和IEEE-30总线测试系统;结果表明,与传统算法相比,所开发的电力系统状态向量估计模型在执行时间、准确性和迭代次数方面均有明显的优势,所提出的估计模型对于实时监控应用具有很好的应用前景.  相似文献   

6.
In this paper, a new method is proposed to solve a nonlinear optimal control problem and determine the Dynamic Load-Carrying Capacity (DLCC) of fixed and mobile manipulators in point-to-point motion. Solution methods for designing nonlinear optimal controller in closed loop form are usually based on indirect methods, but the proposed method is a combination of direct and indirect methods. The optimal control law with state feedback form, for nonlinear dynamic systems, is given by the solution to the nonlinear Hamilton–Jacobi–Bellman (HJB) equation. The Galerkin procedure and a nonlinear optimization algorithm are used to solve this equation numerically. Another innovation of this paper is optimal trajectory planning, which is done simultaneously with the controller design procedure. Finally, a new algorithm is developed to find DLCC of manipulators and the related optimal trajectory using proposed method. The validity of the method is demonstrated via simulation and experimental tests for a fixed manipulator and two-link wheeled mobile manipulator named Scout.  相似文献   

7.
基于动态规划的约束优化问题多参数规划求解方法及应用   总被引:1,自引:0,他引:1  
结合动态规划和单步多参数二次规划, 提出一种新的约束优化控制问题多参数规划求解方法. 一方面能得到约束线性二次优化控制问题最优控制序列与状态之间的显式函数关系, 减少多参数规划问题求解的工作量; 另一方面能够同时求解得到状态反馈最优控制律. 应用本文提出的多参数二次规划求解方法, 建立无限时间约束优化问题状态反馈显式最优控制律. 针对电梯机械系统振动控制模型做了数值仿真计算.  相似文献   

8.
In this paper, the optimal filtering problem is investigated for a class of networked systems in the presence of stochastic sensor gain degradations. The degradations are described by sequences of random variables with known statistics. A new measurement model is put forward to account for sensor gain degradations, network-induced time delays as well as network-induced data dropouts. Based on the proposed new model, an optimal unbiased filter is designed that minimizes the filtering error variance at each time-step. The developed filtering algorithm is recursive and therefore suitable for online application. Moreover, both currently and previously received signals are utilized to estimate the current state in order to achieve a better accuracy. A numerical simulation is exploited to illustrate the effectiveness of the proposed algorithm.  相似文献   

9.
Estimating the state of a nonlinear stochastic system (observed through a nonlinear noisy measurement channel) has been the goal of considerable research to solve both filtering and control problems. In this paper, an original approach to the solution of the optimal state estimation problem by means of neural networks is proposed, which consists in constraining the state estimator to take on the structure of a multilayer feedforward network. Both non-recursive and recursive estimation schemes are considered, which enable one to reduce the original functional problem to a nonlinear programming one. As this reduction entails approximations for the optimal estimation strategy, quantitative results on the accuracy of such approximations are reported. Simulation results confirm the effectiveness of the proposed method.  相似文献   

10.
In this paper we investigate the optimal dynamics of simply supported nonlinearly elastic beams with rectangular cross-sections. We consider the elastic beam under the assumption of time-dependent intensive transverse loading. The state of the beam is described by a system of partial differential equations of the fourth order. We deal with the problem of choosing the optimal shape for the beam. The optimal shape is determined in such a way that the deflection of the nonlinearly elastic beam for any given time is minimal. The problem of choosing the optimal shape is formulated as an optimal control problem. To solve the obtained problem effectively, we use the optimality principle of Bellman (Bellman and Dreyfus 1962; Bryson and Ho 1975) and the penalty function method (Polyak 1987). We present a constructive algorithm for the optimal design of nonlinearly elastic beams. Some simple examples of the implementation of the proposed numerical algorithm are given.  相似文献   

11.
针对部分系统存在输入约束和不可测状态的最优控制问题,本文将强化学习中基于执行–评价结构的近似最优算法与反步法相结合,提出了一种最优跟踪控制策略.首先,利用神经网络构造非线性观测器估计系统的不可测状态.然后,设计一种非二次型效用函数解决系统的输入约束问题.相比现有的最优方法,本文提出的最优跟踪控制方法不仅具有反步法在处理...  相似文献   

12.
For the finite-horizon optimal control problem of the Takagi-Sugeno (TS) fuzzy-model-based time-delay control systems, by integrating the delay-dependent stabilizability condition, the shifted-Chebyshev-series approach (SCSA), and the hybrid Taguchi-genetic algorithm (HTGA), an integrative method is presented to design the stable and quadratic optimal parallel distributed compensation (PDC) controllers. In this paper, the delay-dependent stabilizability condition is proposed in terms of linear matrix inequalities (LMIs). Based on the SCSA, an algebraic algorithm only involving the algebraic computation is derived in this paper for solving the TS fuzzy-model-based time-delay feedback dynamic equations. In addition, by using the SCSA, the stable and quadratic optimal PDC control problem for the TS fuzzy-model-based time-delay control systems is replaced by a static parameter optimization problem represented by the algebraic equations with constraint of the LMI-based stabilizability condition, thus greatly simplifying the stable and optimal PDC control design problem. The computational complexity for both differential and integral in the stable and optimal PDC control design of the original dynamic systems may therefore be reduced considerably. Then, for the static constrained optimization problem, the HTGA is employed to find the stable and quadratic optimal PDC controllers of the TS fuzzy-model-based time-delay control systems. A design example of the stable and quadratic optimal PDC controllers for the continuous-stirred-tank-reactor system is given to demonstrate the applicability of the proposed integrative approach.  相似文献   

13.
郝石磊  王志海  刘海洋 《软件学报》2022,33(5):1817-1832
时间序列分类问题是时间序列数据挖掘中的一项重要任务, 近些年受到了越来越广泛的关注. 该问题的一个重要组成部分就是时间序列间的相似性度量. 在众多相似性度量算法中, 动态时间规整是一种非常有效的算法,目前已经被广泛应用到视频、音频、手写体识别以及生物信息处理等众多领域. 动态时间规整本质上是一种在边界及时间一致性约束下...  相似文献   

14.
求解最优控制问题的Chebyshev-Gauss伪谱法   总被引:1,自引:0,他引:1  
唐小军  尉建利  陈凯 《自动化学报》2015,41(10):1778-1787
提出了一种求解最优控制问题的Chebyshev-Gauss伪谱法, 配点选择为Chebyshev-Gauss点. 通过比较非线性规划问题的Kaursh-Kuhn-Tucker条件和伪谱离散化的最优性条件, 导出了协态和Lagrange乘子的估计公式. 在状态逼近中, 采用了重心Lagrange插值公式, 并提出了一种简单有效的计算状态伪谱微分矩阵的方法. 该法的独特优势是具有良好的数值稳定性和计算效率. 仿真结果表明, 该法能够高精度地求解带有约束的复杂最优控制问题.  相似文献   

15.
李金娜  马士凯 《控制与决策》2020,35(12):2889-2897
控制系统的应用中存在状态不能直接测量或测量成本高的实际问题,给模型参数未知的系统完全利用状态数据学习最优控制器带来挑战性难题.为解决这一问题,首先构建具有状态观测器且系统矩阵中存在未知参数的离散线性增广系统,定义性能优化指标;然后基于分离定理、动态规划以及Q-学习方法,给出一种具有未知模型参数的非策略Q-学习算法,并设计近似最优观测器,得到完全利用可测量的系统输出和控制输入数据的非策略Q-学习算法,实现基于观测器状态反馈的系统优化控制策略,该算法的优点在于不要求系统模型参数全部已知,不要求系统状态直接可测,利用可测量数据实现指定性能指标的优化;最后,通过仿真实验验证所提出方法的有效性.  相似文献   

16.
李金娜  尹子轩 《控制与决策》2019,34(11):2343-2349
针对具有数据包丢失的网络化控制系统跟踪控制问题,提出一种非策略Q-学习方法,完全利用可测数据,在系统模型参数未知并且网络通信存在数据丢失的情况下,实现系统以近似最优的方式跟踪目标.首先,刻画具有数据包丢失的网络控制系统,提出线性离散网络控制系统跟踪控制问题;然后,设计一个Smith预测器补偿数据包丢失对网络控制系统性能的影响,构建具有数据包丢失补偿的网络控制系统最优跟踪控制问题;最后,融合动态规划和强化学习方法,提出一种非策略Q-学习算法.算法的优点是:不要求系统模型参数已知,利用网络控制系统可测数据,学习基于预测器状态反馈的最优跟踪控制策略;并且该算法能够保证基于Q-函数的迭代Bellman方程解的无偏性.通过仿真验证所提方法的有效性.  相似文献   

17.
This paper deals with the design of an optimal stochastic controller possessing tracking capability of any reference output trajectory in the presence of measurement noise. We consider multi-input multi-output linear time-invariant systems and a proportional-integral-derivative (PID) controller. The system under consideration needs not be stable. A recursive algorithm providing optimal time-varying PID gains is proposed for the case where the number of inputs is larger than or equal to the number of outputs. The development of the proposed algorithm aims for per-time-sample minimisation of the mean-square output error in the presence of erroneous initial conditions, measurement noise, and process noise. Necessary and sufficient conditions are provided for the convergence of the output error covariance. In addition, convergence results are presented for discretised continuous-time plants. Simulation results are included to illustrate the performance capabilities of the proposed algorithm. Performance comparison with an optimal stochastic iterative learning control scheme, an optimal PID controller, an adaptive PID controller, and a recent optimal stochastic PID controller are also included.  相似文献   

18.
This paper deals with the state-space constrained optimal control problems with control variables appearing linearly by the concept of decomposition. To solve this continuous optimal control problem, we first discretize the time and replace the system of differential equations by difference equations. For this resulting discrete optimal control problem, fixing the value of state variables reduces the given problem to a finite number of independent linear programming problems which are parameterized by the value of state variables. From this point of view, after para. meterizing by the value of state variables, we outer-linearize the resulting itifimal valuo functions in the minimond and apply the relaxation strategy to the new constraints arising as a consequence of outer-linearization. An algorithm is proposed which requires baek-and-forth iteration between a master problem and a finite number of linear programming subproblems. Finite convergence of this algorithm follows directly from the finite number of constraints of the master problem.  相似文献   

19.
Coverage control has been widely used for constructing mobile sensor network such as for environmental monitoring, and one of the most commonly used methods is the Lloyd algorithm based on Voronoi partitions. However, when this method is used, the result sometimes converges to a local optimum. To overcome this problem, game theoretic coverage control has been proposed and found to be capable of stochastically deriving the optimal deployment. From a practical point of view, however, it is necessary to make the result converge to the global optimum deterministically. In this paper, we propose a global optimal coverage control along with collision avoidance in continuous space that ensures multiple sensors can deterministically and smoothly move to the global optimal deployment. This approach consists of a cut-in algorithm based on neighborhood importance of measurement and a modified potential method for collision avoidance. The effectiveness of the proposed algorithm has been confirmed through numerous simulations and some experiments using multiple aerial robots.  相似文献   

20.
This paper presents an analytical approximate solution for a class of nonlinear quadratic optimal control problems. The proposed method consists of a Variational Iteration Method (VIM) together with a shooting method like procedure, for solving the extreme conditions obtained from the Pontryagin’s Maximum Principle (PMP). This method is applicable for a large class of nonlinear quadratic optimal control problems. In order to use the proposed method, a control design algorithm with low computational complexity is presented. Through the finite iterations of algorithm, a suboptimal control law is obtained for the nonlinear optimal control problem. Two illustrative examples are given to demonstrate the simplicity and efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号