首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Systems & Control Letters》2004,51(3-4):203-215
This paper deals with the problems of robust stabilization and robust H control for discrete stochastic systems with time-varying delays and time-varying norm-bounded parameter uncertainties. For the robust stabilization problem, attention is focused on the design of a state feedback controller which ensures robust stochastic stability of the closed-loop system for all admissible uncertainties, while for the robust H control problem, a state feedback controller is designed such that, in addition to the requirement of the robust stochastic stability, a prescribed H performance level is also required to be satisfied. A linear matrix inequality (LMI) approach is developed to solve these problems, and delay-dependent conditions for the solvability are obtained. It is shown that the desired state feedback controller can be constructed by solving certain LMIs. An example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

2.
In this article, the problem of H control is investigated for a class of mechanical systems with input delay and parameter uncertainties which appear in all the mass, damping and stiffness matrices. Two approaches, norm-bounded and linear fractional transformation (LFT) uncertainty formulations, are considered. By using a new Lyapunov–Krasovskii functional approach, combined with the advanced techniques for achieving delay dependence, improved robust H state-feedback controller design methods are developed. The existence condition for admissible controllers is formulated in the form of linear matrix inequalities (LMIs), and the controller design is cast into a convex optimisation problem subject to LMI constraints. If the optimisation problem is solvable, a desired controller can be readily constructed. The result for the norm-bounded uncertainty case improves the existing ones in terms of design conservatism, and that for the LFT uncertainty case represents the first attempt in this direction. An illustrative example is provided to show the effectiveness and advantage of the proposed controller design methodologies.  相似文献   

3.
This paper focuses on the problem of robust H ?? control of nonlinear switched systems with parameter uncertainty via the multiple Lyapunov functions (MLFs) approach. The uncertain parameters are assumed to be in a known compact set and are allowed to enter the system nonlinearly. Based on the explicit construction of Lyapunov functions, which avoids solving the Hamilton-Jacobi-Isaacs (HJI) inequalities, sufficient conditions for the solvability of the robust H ?? control problem of cascade nonlinear switched systems are derived under some switching signal. Then, the result is extended to solve the robust H ?? control problem of nonlinear switched systems in strict feedback form. Finally, the effectiveness of the proposed results is illustrated through a simulation example.  相似文献   

4.
This article considers the distributed containment control problem of nonlinear multi-agent systems subject to parameter uncertainties and external disturbances. An appropriate controlled output function is defined to quantitatively analyse the effect of external disturbances on the containment control problem. By employing robust H control approach, sufficient conditions in terms of linear matrix inequalities (LMIs) are derived to ensure that all followers asymptotically converge to the convex hull spanned by the leaders with the prescribed H performance under fixed topology. Moreover, the unknown feedback matrix of the proposed protocol is determined by solving only two LMIs with the same dimensions as a single agent. Finally, a numerical example is provided to demonstrate the effectiveness of our theoretical results.  相似文献   

5.
This paper deals with the problem of robust reliable control for a class of uncertain neutral delay systems. The aim was to design a state feedback controller such that the plant remained stable for all admissible uncertainties as well as actuator faults among a prespecified subset of actuators or sector-type actuator non-linearity, independently of the delay time. A linear matrix inequality approach was developed to solve the problem addressed with an H X norm bound constraint on disturbance attenuation.  相似文献   

6.
In this paper, the problem of robust sampled-data H control of linear uncertain singularly perturbed systems is investigated. The parametric uncertainties are assumed to be time-varying and norm-bounded. Two types of controller design are considered: (1) with a fast sampling in the fast state and a slow one in the slow state, and (2) with a fast sampling in both states. For each type, a time-dependent Lyapunov functional associated with the sampling pattern is introduced to analyse the exponential stability and L2-gain performance of the closed-loop system. Linear matrix inequalities based solutions of the robust sampled-data H control problem are derived. The new results are proved theoretically to be less conservative than the existing results. An illustrative example is given which substantiates the usefulness of the proposed method.  相似文献   

7.
This paper investigates the problem of robust H filter design for uncertain discrete piecewise time-delay systems based on a piecewise Lyapunov functional. The parametric uncertainties are assumed to be time-varying but norm bounded. The purpose is the design of a piecewise filter such that, for all admissible uncertainties, the resulting filtering error system is asymptotically stable and satisfies a prescribed H performance level. By introducing some different extra matrix variables, a sufficient condition for the solvability of this problem is obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, the explicit expression of a desired piecewise filter is given. Two numerical examples are provided to demonstrate the effectiveness of the proposed design method.  相似文献   

8.
This article considers the robust H sliding mode control problem for a class of uncertain switched delay systems. A single sliding surface is constructed such that the reduced-order equivalent sliding motion restricted to the sliding surface is completely invariant to all admissible uncertainties. For cases of known delay and unknown delay, the existence conditions of the sliding surface are proposed, respectively. The corresponding hysteresis switching laws are designed such that the sliding motion is stabilisable with H disturbance attenuation level γ. Furthermore, variable structure controllers are developed to drive the state of the switched system to reach the single sliding surface in finite time and remain on it thereafter. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.  相似文献   

9.
This article is concerned with the problem of H predictive control of networked control system with random network delay. A new control scheme termed networked predictive control is proposed. This scheme mainly consists of the control prediction generator and network delay compensator. While designing the predictor, the control input to the actuator may be different due to networked induced time-delay and data dropout, and two cases are considered depending on the way that the observer obtains the plant control input u t . The necessary and sufficient conditions are given for the closed-loop networked predictive control system to be stochastically stable for different u t and random network delays in controller to actuator channel (CAC) and sensor to controller channel (SCC). A simulation study shows the effectiveness of the proposed scheme.  相似文献   

10.
This paper investigates the problem of multi-objective control for a class of uncertain discrete-time fuzzy systems. The state-space Takagi–Sugeno T–S fuzzy model with linear fractional parameter uncertainties is adopted. Based on a linear matrix inequality approach and via so-called dynamic parallel distributed compensation, a fuzzy full-order dynamic output feedback controller is developed such that the L 2 gain performance from the exogenous input signals to the controlled output is less than or equal to some prescribed value and, for all admissible uncertainties, the closed-loop poles of each local system are within a pre-specified sub-region of complex plane. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.  相似文献   

11.
This paper mainly explored the problem of stability in terms of discrete singular T-S fuzzy Markov jump systems with uncertainties and external disturbances. A new sliding mode controller is proposed for this type of system. Firstly, a common sliding surface that can be shared by all subsystems of discrete singular systems is designed, so the jumping effects could be weakened. Secondly, the proof of stochastic admissibility of the closed-loop dynamic system is provided by deriving the linear matrix inequality (LMI) technique. Thirdly, an appropriate sliding mode control (SMC) law is designed to satisfy the discrete reaching condition. And, finally, a simulation is offered to illustrate the effectiveness of the derived results.  相似文献   

12.
In this paper, an event-triggering scheme is implemented in uncertain switched linear systems with time-varying delays and exogenous disturbance. Instead of standard periodically time-triggered, sampled-data control systems, the event-triggered control systems sample data only when an event, typically defined as some performance error exceeding a tolerant bound, occurs. Specifically, considering the disturbance existing in the system, the event-triggered robust H control problem is studied. In order to guarantee the robust H performance, the event-triggered full state feedback control, multiple Lyapunov functions method and state-dependent switching law are utilised to construct sufficient conditions in terms of linear matrix inequalities. In particular, since the event-triggered signals and switching signals may interlace with each other, the influence from them on the analysis of robust H performance is clarified. Subsequently, sufficient design conditions of the sub-controllers’ gains are further presented. Moreover, the Zeno problem is discussed to exclude continuously triggering and sampling. Finally, numerical simulations are provided to verify the feasibility of the proposed approach.  相似文献   

13.
14.
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.  相似文献   

15.
16.
This paper is concerned with the problem of delay-dependent robust H control for uncertain fuzzy Markovian jump systems with time delays. The purpose is to design a mode-dependent state-feedback fuzzy controller such that the closed-loop system is robustly stochastically stable and satisfies an H performance level. By introducing slack matrix variables, a delay-dependent sufficient condition for the solvability of the problem is proposed in terms of linear matrix inequalities. An illustrative example is finally given to show the applicability and effectiveness of the proposed method. Recommended by Editorial Board member Young Soo Suh under the direction of Editor Jae Weon Choi. This work is supported by the National Science Foundation for Distinguished Young Scholars of P. R. China under Grant 60625303, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20060288021, and the Natural Science Foundation of Jiangsu Province under Grant BK2008047. Yashun Zhang received the B.S. and M.S. degrees in Control Science and Control Engineering from Hefei University of Science and Technology in 2003 and 2006. He is currently a Ph.D. student in Control Science and Control Engineering, Nanjing University of Science and Technology. His research interests include fuzzy control, sliding mode control and nonlinear control. Shengyuan Xu received the Ph.D. degree in Control Science and Control Engineering from Nanjing University of Science and Technology in 1999. His research interests include robust filtering and control, singular systems, time-delay systems and nonlinear systems. Jihui Zhang is a Professor in the School of Automation Engineering of Qingdao University, China. His main areas of interest are discrete event dynamic systems, production planning and control, and operations research.  相似文献   

17.
18.
In this paper, we discuss the mixed H2/H distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.  相似文献   

19.
In this paper we extend the classical min–max model predictive control framework to a class of uncertain discrete event systems that can be modelled using the operations maximization, minimization, addition and scalar multiplication, and that we call max–min-plus-scaling (MMPS) systems. Provided that the stage cost is an MMPS expression and considering only linear input constraints then the open-loop min–max model predictive control problem for MMPS systems can be transformed into a sequence of linear programming problems. Hence, the min–max model predictive control problem for MMPS systems can be solved efficiently, despite the fact that the system is non-linear. A min–max feedback model predictive control approach using disturbance feedback policies is also presented, which leads to improved performance compared to the open-loop approach.  相似文献   

20.
In this paper, robust H control for a class of uncertain stochastic Markovian jump systems (SMJSs) with interval and distributed time-varying delays is investigated. The jumping parameters are modelled as a continuous-time, finite-state Markov chain. By employing the Lyapunov-Krasovskii functional and stochastic analysis theory, some novel sufficient conditions in terms of linear matrix inequalities are derived to guarantee the mean-square asymptotic stability of the equilibrium point. Numerical simulations are given to demonstrate the effectiveness and superiority of the proposed method comparing with some existing results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号