首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the problem of stability analysis for continuous‐time systems with time‐varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration, and new delay‐dependent sufficient stability criteria are obtained in terms of linear matrix inequalities. The merits of the proposed results lie in their less conservatism, which are realized by choosing different Lyapunov matrices in the decomposed integral intervals and estimating the upper bound of some cross term more exactly. Numerical examples are given to illustrate the effectiveness and less conservatism of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Exponential stability necessary conditions for linear periodic time‐delay systems are presented. They are obtained with the help of new properties of the Lyapunov matrix in the framework of Lyapunov–Krasvoskii functionals of complete type. An academic example illustrates our results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
利用多Lyapunov函数方法、驻留时间法和Gronwall-Bellman不等式研究了一类时滞切换系统的输入-状态稳定性分析问题.从系统输入-状态稳定定义出发,给出了使得一类时滞切换系统输入-状态稳定的充分条件.与已有的方法相比,无需同时满足构造输入-状态稳定控制Lyapunov函数和所有子系统都是输入-状态稳定的条件,为控制器的设计提供了便利.最后,通过算例仿真验证了所提出方法的可行性.  相似文献   

4.
研究了一类不确定中立型变时滞系统的鲁棒稳定性问题。不确定性满足范数有界条件且时变。基于Lyapunov和自由权矩阵的方法,得到了系统的鲁棒稳定性判据,并表示成线性矩阵不等式的形式。最后,仿真结果表明本结论比一些现存的结果有了重要提高。  相似文献   

5.
This paper is concerned with analyzing input-to-state stability (ISS) and integral-ISS (iISS) for nonlinear impulsive systems with delays. Razumikhin-type theorems are established which guarantee ISS/iISS for delayed impulsive systems with external input affecting both the continuous dynamics and the discrete dynamics. It is shown that when the delayed continuous dynamics are ISS/iISS but the discrete dynamics governing the impulses are not, the ISS/iISS property of the impulsive system can be retained if the length of the impulsive interval is large enough. Conversely, when the delayed continuous dynamics are not ISS/iISS but the discrete dynamics governing the impulses are, the impulsive system can achieve ISS/iISS if the sum of the length of the impulsive interval and the time delay is small enough. In particular, when one of the delayed continuous dynamics and the discrete dynamics are ISS/iISS and the others are stable for the zero input, the impulsive system can keep ISS/iISS no matter how often the impulses occur. Our proposed results are evaluated using two illustrative examples to show their effectiveness.  相似文献   

6.
7.
This paper is concerned with the analysis of the mean square exponential stability and the almost sure exponential stability of linear stochastic neutral delay systems. A general stability result on the mean square and almost sure exponential stability of such systems is established. Based on this stability result, the delay partitioning technique is adopted to obtain a delay‐dependent stability condition in terms of linear matrix inequalities (LMIs). In obtaining these LMIs, some basic rules of the Ito calculus are also utilized to introduce slack matrices so as to further reduce conservatism. Some numerical examples borrowed from the literature are used to show that, as the number of the partitioning intervals increases, the allowable delay determined by the proposed LMI condition approaches hmax, the maximal allowable delay for the stability of the considered system, indicating the effectiveness of the proposed stability analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This article addresses the problem of finite‐time stability (FTS) and finite‐time contractive stability (FTCS) for switched nonlinear time‐delay systems (SNTDSs). By virtues of the Lyapunov‐Razumikhin method, Lyapunov functionals approach, and the comparison principle technique, we obtain some improved Razumikhin‐type theorems that verify FTS and FTCS property for SNTDSs. Moreover, our results allow the estimate of the upper bound of the derivatives for Lyapunov functions to be mode dependent functions which can be positive and negative. Meanwhile, the proposed results also improve the related existing results on the same topic by removing some restrictive conditions. Finally, two examples are presented to verify the effectiveness of our methods.  相似文献   

9.
将严格实用稳定性相关概念推广到具有控制输入的非线性奇异系统,利用两个Lyapunov函数方法和比较原理,得出其严格实用稳定及严格实用渐近稳定的判别准则.另外,我们给出了含有时滞的非线性奇异系统关于两个测度严格实用稳定的定义,并得出该类系统严格实用稳定及严格实用渐近稳定的充分条件.  相似文献   

10.
The paper deals with the problem of the asymptotic stability for general continuous nonlinear networked control systems (NCSs). Based on Lyapunov stability theorem combined with improved Razumikhin technique, the sufficient conditions of asymptotic stability for the system are derived. With the proposed method, the estimate of maximum allowable delay bound (MADB) for linear networked control system is also given. Compared to the other methods, the proposed method gives a much less conservative MADB and more general results. Numerical examples and some simulations are worked out to demonstrate the effectiveness and performance of the proposed method.  相似文献   

11.
This paper considers the robust stability and stabilisation of uncertain impulsive positive systems with delay in state. The robust global exponential stability criterion under ranged dwell-time is first established by employing an impulse-time-dependent copositive Lyapunov function. Extensions to the exponential stability of the considered system under constant, arbitrary, maximal and minimal dwell-time are then derived. To positively stabilise the considered system under ranged dwell-time, a method of state-feedback controller design is presented based on the derived stability condition. Several numerical examples illustrate the reduced conservatism and effectiveness of the obtained theoretical results.  相似文献   

12.
Semi‐Markovian jump systems are more general than Markovian jump systems in modeling practical systems. On the other hand, the finite‐time stochastic stability is also more effective than stochastic stability in practical systems. This paper focuses on the finite‐time stochastic stability, exponential stochastic stability, and stabilization of semi‐Markovian jump systems with time‐varying delay. First, a new stability condition is presented to guarantee the finite‐time stochastic stability of the system by using a new Lyapunov‐Krasovskii functional combined with Wirtinger‐based integral inequality. Second, the stability criterion is further proved to guarantee the exponential stochastic stability of the system. Moreover, a controller design method is also presented according to the stability criterion. Finally, an example is provided to illustrate that the proposed stability condition is less conservative than other existing results. Additionally, we use the proposed method to design a controller for a load frequency control system to illustrate the effectiveness of the method in a practical system of the proposed method.  相似文献   

13.
The issue of exponential stability analysis of continuous‐time switched singular systems consisting of a family of stable and unstable subsystems with time‐varying delay is investigated in this paper. It is very difficult to analyze the stability of such systems because of the existence of time‐delay and unstable subsystems. In this regard, on the basis of the free‐weighting matrix approach, by constructing the new Lyapunov‐like Krasovskii functional, and using the average dwell‐time approach, delay‐dependent sufficient conditions are derived and formulated in terms of LMIs to check the exponential stability of such systems. This paper also highlights the relationship between the average dwell‐time of the switched singular time‐delay system, its stability, exponential convergence rate of differential states, and algebraic states. Finally, a numerical example is given to confirm the analytical results and illustrate the effectiveness of the proposed strategy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.  相似文献   

15.
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.  相似文献   

16.
本文给出了一种可定量分析采样控制系统的时滞鲁棒稳定性的方法.因为采样系统的对象是连续时间的,所以对象中的时滞也应该是按连续时间来处理.文中指出,一个整数倍时滞是稳定的采样系统,可能会因为有并不很大的连续时间时滞而失稳.定义了一个新的变量w(t),用来描述这个不确定连续时间时滞带来的动特性.将w(t)的反馈回路分成与时滞无关和有关的两个部分,并提出了一种用频率响应来确定是否存在由不确定时滞引起的周期解的方法.用修正z-变换法和仿真验证了这个由图解解析所求得的解.本方法既可用于采样系统,也可用于一般的连续时间系统.  相似文献   

17.
This article deals with the problem of robust stochastic stability for a class of uncertain discrete stochastic Markovian jumping systems with time-varying interval delay. By constructing a parameter-dependent Lyapunov–Krasovskii functional and checking its difference in two subintervals, respectively, some novel delay-segment-dependent stability criteria for the addressed system are derived. Two simulation examples are given to show effectiveness of the proposed method.  相似文献   

18.
This paper is concerned with the problem of stability analysis for continuous‐time/discrete‐time systems with interval time‐varying delay. Based on the idea of partitioning the delay interval into l nonuniform subintervals, new Lyapunov functionals are established. By utilizing the reciprocally convex approach to deal with the delay information in each subinterval, sufficient stability conditions are proposed in terms of linear matrix inequalities. Based on these criteria, the optimal partitioning method is given on the basis of the genetic algorithm. Finally, the reduced conservatism of the results in this paper is illustrated by numerical examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this paper the concepts of dissipativity and the exponential dissipativity are used to provide sufficient conditions for guaranteeing asymptotic stability of a time delay dynamical system. Specifically, representing a time delay dynamical system as a negative feedback interconnection of a finite‐dimensional linear dynamical system and an infinite‐dimensional time delay operator, we show that the time delay operator is dissipative with respect to a quadratic supply rate and with a storage functional involving an integral term identical to the integral term appearing in standard Lyapunov–Krasovskii functionals. Finally, using stability of feedback interconnection results for dissipative systems, we develop sufficient conditions for asymptotic stability of time delay dynamical systems. The overall approach provides a dissipativity theoretic interpretation of Lyapunov–Krasovskii functionals for asymptotically stable dynamical systems with arbitrary time delay. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号