首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article is concerned with the dynamic output feedback H control problem for networked control systems with quantisation and random communication delays, where the random communication delays from the sensor to the controller and from the controller to the actuator are considered simultaneously. A novel quantised random delay model is proposed, and by using this model, the relationship of the quantisations, delays and the system performance is studied. The quantiser considered here is dynamic and composed of an adjustable zoom parameter and a static quantiser. With the condition on the quantisation range and the error bound satisfied, a quantised H control strategy is derived such that the closed-loop system is exponentially mean-square stable and with a prescribed H performance bound. An example is presented to illustrate the effectiveness of the proposed method.  相似文献   

2.
This study deals with the problem of dual-terminal event-triggered dynamic output feedback (DOF) control for aero engine networked control systems (NCSs) subject to network-induced delay, external disturbance, and quantization effects. First, we established a generalized mathematical model of the aero engine. Second, a dual-terminal dynamic event-triggered mechanism (DETM) was designed to reduce the utilization of the network bandwidth. In addition, a DOF controller with a compensation function was proposed to stabilize the system. By utilizing the Lyapunov-Krasovskii (LK) method, the stability criteria were determined. Accordingly, the design conditions of the DOF controller and DETMs were presented. Furthermore, based on a genetic algorithm (GA), a parameter tuning method was proposed to obtain the allowable delay upper bound with less conservatism. Finally, some examples were presented to show the effectiveness and superiority of the presented scheme.  相似文献   

3.
The paper is concerned with the global adaptive stabilisation via output feedback for a class of uncertain planar nonlinear systems. Remarkably, the unknowns in the systems are rather serious: the control coefficients are unknown constants which do not belong to any known interval, and the growth of the systems heavily depends on the unmeasured states and has the rate of unknown polynomial of output. First, a delicate state transformation is introduced to collect the unknown control coefficients, and subsequently, a suitable state observer is successfully designed with two different dynamic gains. Then, an adaptive output feedback controller is proposed by flexibly combining the universal control idea and the backstepping technique. Meanwhile, an appropriate estimation law is constructed to overcome the negative effect caused by the unknown control coefficients. It is shown that, with the appropriate choice of the design parameters, all the states of the resulting closed-loop system are globally bounded, and furthermore, the states of the original system converge to zero.  相似文献   

4.
5.
1IntroductionSingular systems have comprehensive practical back-ground such as power systems[1,2],social economicsystems[3],circuit systems[4],and so on.Great progress[5~7]has been made in the theory and its applicationssince1970s.On the other hand,control of delay systemshas been a topic of recurring interest over the past decadessince time_delays are often the main causes for instabilityand poor performance of systems and encounteredfrequently in various engineering systems.There exist anext…  相似文献   

6.
This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.  相似文献   

7.
This article is devoted to the consensus control for switching networks of multiple agents with linear coupling dynamics and subject to external disturbances, which is transformed into an H control problem by defining an appropriate controlled output. On this basis, a distributed dynamic output feedback protocol is proposed with an undetermined system matrix, and a condition in terms of linear matrix inequalities (LMIs) is derived to ensure consensus of the multi-agent system with a prescribed H level. Furthermore, system matrix of the protocol is designed by solving two LMIs. A numerical example is included to illustrate the effectiveness of the proposed consensus protocol.  相似文献   

8.
This paper considers H controller design for a class of networked switched discrete systems under asynchronous switching. The sojourn probability information – the probability of the switched systems staying in each subsystem – is first used to rebuild the networked switched systems. Also, a time-varying lag, depending on both the network-induced delays and switching signals, is taken into consideration between the switching instants of the controllers and systems model. By considering both sojourn probability information and asynchronous switching, a new kind of networked switched system model is proposed, wherein a set of random variables are proposed to describe the sojourn probabilities of the subsystems. Then, stability analysis and H performance analysis under asynchronous switching are derived. It should be noted that the system performance depends not only on the time-varying lag, but also on the sojourn probabilities. Finally, an example is given to illustrate the effectiveness of the proposed approach.  相似文献   

9.
In this paper, the formation consensus problem for a class of leader–follower networked multi-agent systems under communication constraints and switching topologies is investigated. A networked predictive control scheme is proposed to achieve stability and output formation consensus with the switching topology, capable of compensating for data loss and time delays in the network. By equating the whole closed-loop networked multi-agent system with the proposed control scheme to the corresponding switched system, the sufficient and necessary condition of output formation consensus and stability for agents is given. Finally, using three-degree-of-freedom air-bearing spacecraft simulators as the control objects, the proposed scheme is demonstrated to be able to actively compensate for the communication constraints through numerical simulations, and it is also verified to have a good control performance by further realizing the formation task of the simulators through practical experiments.  相似文献   

10.
This article investigates the problem of designing H dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.  相似文献   

11.
12.
In this article, the problem of sampled-data H control for networked control systems (NCSs) with digital control inputs is considered, where the physical plant is modelled as a continuous-time one, and the control inputs are discrete-time signals. By exploiting a novel Lyapunov–Krasovskii functional, using the Leibniz–Newton formula and a free-weighting matrix method, sufficient conditions for sampled-data H performance analysis and H controller design for such systems are given. Since the obtained conditions of H controller design are not expressed strictly in term of linear matrix inequalities, the sampled-data H controller is solved using modified cone complementary linearisation algorithm. In addition, the new sampled-data stability criteria for the NCSs is proved to be less conservative than some existing results. Numerical examples demonstrate the effectiveness of the proposed methods.  相似文献   

13.
The combined problem of diagonal decoupling by output feedback with disturbance attenuation performance for any square system is formulated. A sufficient condition which is more general than the necessary and sufficient one of static state feedback for the existence of the controller is determined. The necessary and sufficient conditions for the controller and decoupled system that are both stable are presented. An analytical form and a numerical computable method for the controller are obtained for the first time when the condition is satisfied. The correctness of our method is tested by simulations for an example.  相似文献   

14.
《Applied Soft Computing》2008,8(2):949-958
This paper discusses H output feedback control of discrete-time Takagi–Sugeno fuzzy systems with immeasurable premise variables. When we consider the output feedback control of Takagi–Sugeno fuzzy systems, the selection of premise variables plays an important role. If the premise variable is the state of the system, then a fuzzy system describes a wide class of nonlinear systems. However, the state is not measurable in the output feedback control problem. In this case, a control design of the underlying nonlinear system based on parallel distributed compensation is infeasible because a controller depends on the immeasurable state variable. In this paper, we introduce a new method to treat fuzzy systems with immeasurable premise variables and consider a design method of H output feedback control problem. We formulate this fuzzy control problem as a robust H control of an uncertain system. Numerical examples are given to illustrate our methods.  相似文献   

15.
This paper is concerned with the output feedback control problem for spacecraft rendezvous subject to target angular velocity uncertainty and controller uncertainty, external disturbance and input constraint. A general full-order dynamic output feedback (DOF) controller is proposed. As a stepping-stone, the H performance requirement, poles and input constraint are analysed separately via linear matrix inequalities (LMIs). Then, with the obtained results, the controller design problem is cast into a convex problem subject to a set of LMI constraints through a critical change of controller variables. Furthermore, when the system states are all available, a reduced sufficient condition of the non-fragile state feedback controller is given. Compared with existing results, the designed controller has overcome the disadvantage of strictly proper DOF controller, where the initial value of the control input is zero. Besides, the constraint on poles placement is relaxed. A numerical simulation is performed to verify the effectiveness of the proposed method.  相似文献   

16.
This paper investigates the problem of multi-objective control for a class of uncertain discrete-time fuzzy systems. The state-space Takagi–Sugeno T–S fuzzy model with linear fractional parameter uncertainties is adopted. Based on a linear matrix inequality approach and via so-called dynamic parallel distributed compensation, a fuzzy full-order dynamic output feedback controller is developed such that the L 2 gain performance from the exogenous input signals to the controlled output is less than or equal to some prescribed value and, for all admissible uncertainties, the closed-loop poles of each local system are within a pre-specified sub-region of complex plane. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.  相似文献   

17.
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.  相似文献   

18.
In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.  相似文献   

19.
Guaranteed cost control for networked control systems   总被引:10,自引:0,他引:10  
The guaranteed cost control problem for networked control systems (NCSs) is addressed under conmmnication constraints and varying sampling rate. First of all, a simple inFormation-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynarmic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ pefformance cost function.  相似文献   

20.
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号