首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article proposes a novel technique for accelerating the convergence of the previously published norm-optimal iterative learning control (NOILC) methodology. The basis of the results is a formal proof of an observation made by D.H. Owens, namely that the NOILC algorithm is equivalent to a successive projection algorithm between linear varieties in a suitable product Hilbert space. This leads to two proposed accelerated algorithms together with well-defined convergence properties. The results show that the proposed accelerated algorithms are capable of ensuring monotonic error norm reductions and can outperform NOILC by more rapid reductions in error norm from iteration to iteration. In particular, examples indicate that the approach can improve the performance of NOILC for the problematic case of non-minimum phase systems. Realisation of the algorithms is discussed and numerical simulations are provided for comparative purposes and to demonstrate the numerical performance and effectiveness of the proposed methods.  相似文献   

2.
This paper characterises stochastic convergence properties of adjoint-based (gradient-based) iterative learning control (ILC) applied to systems with load disturbances, when provided only with approximate gradient information and noisy measurements. Specifically, conditions are discussed under which the approximations will result in a scheme which converges to an optimal control input. Both the cases of time-invariant step sizes and cases of decreasing step sizes (as in stochastic approximation) are discussed. These theoretical results are supplemented with an application on a sequencing batch reactor for wastewater treatment plants, where approximate gradient information is available. It is found that for such case adjoint-based ILC outperforms inverse-based ILC and model-free P-type ILC, both in terms of convergence rate and measurement noise tolerance.  相似文献   

3.
The paper describes a substantial extension of norm optimal iterative learning control (NOILC) that permits tracking of a class of finite dimensional reference signals whilst simultaneously converging to the solution of a constrained quadratic optimisation problem. The theory is presented in a general functional analytical framework using operators between chosen real Hilbert spaces. This is applied to solve problems in continuous time where tracking is only required at selected intermediate points of the time interval but, simultaneously, the solution is required to minimise a specified quadratic objective function of the input signals and chosen auxiliary (state) variables. Applications to the discrete time case, including the case of multi-rate sampling, are also summarised. The algorithms are motivated by practical need and provide a methodology for reducing undesirable effects such as payload spillage, vibration tendencies and actuator wear whilst maintaining the desired tracking accuracy necessary for task completion. Solutions in terms of NOILC methodologies involving both feedforward and feedback components offer the possibilities of greater robustness than purely feedforward actions. Results describing the inherent robustness of the feedforward implementation are presented and the work is illustrated by experimental results from a robotic manipulator.  相似文献   

4.
This article investigates the two paradigms of norm optimal iterative learning control (NOILC) and parameter optimal iterative learning control (POILC) for multivariable (MIMO) ?-input, m-output linear discrete-time systems. The main result is a proof that, despite their algebraic and conceptual differences, they can be unified using linear quadratic multi-parameter optimisation techniques. In particular, whilst POILC has been naturally regarded as an approximation to NOILC, it is shown that the NOILC control law can be generated from a suitable choice of control law parameterisation and objective function in a multi-parameter MIMO POILC problem. The form of this equivalence is used to propose a new general approach to the construction of POILC problems for MIMO systems that approximates the solution of a given NOILC problem. An infinite number of such approximations exist. This great diversity is illustrated by the derivation of new convergent algorithms based on time interval and gradient partition that extend previously published work.  相似文献   

5.
Boundary effects in iterative learning control (ILC) algorithms are considered in this article. ILC algorithms involve filtering of input and error signals over finite-time intervals, often using non-causal filters, and it is important that the boundary effects of the filtering operations are handled in an appropriate way. The topic is studied using both a proposed theoretical framework and simulations, and it is shown that the method for handling the boundary effects has impact on the stability and convergence properties of the ILC algorithm.  相似文献   

6.
Motivated by the commonly encountered problem in which tracking is only required at selected intermediate points within the time interval, a general optimisation-based iterative learning control (ILC) algorithm is derived that ensures convergence of tracking errors to zero whilst simultaneously minimising a specified quadratic objective function of the input signals and chosen auxiliary (state) variables. In practice, the proposed solutions enable a repeated tracking task to be accurately completed whilst simultaneously reducing undesirable effects such as payload spillage, vibration tendencies and actuator wear. The theory is developed using the well-known norm optimal ILC (NOILC) framework, using general linear, functional operators between real Hilbert spaces. Solutions are derived using feedforward action, convergence is proved and robustness bounds are presented using both norm bounds and positivity conditions. Algorithms are specified for both continuous and discrete-time state-space representations, with the latter including application to multi-rate sampled systems. Experimental results using a robotic manipulator confirm the practical utility of the algorithms and the closeness with which observed results match theoretical predictions.  相似文献   

7.
This paper proposes an iterative learning control (ILC) algorithm with the purpose of controling the output of a linear stochastic system presented in state space form to track a desired realizable trajectory. It is proved that the algorithm converges to the optimal one a.s. under the condition that the product input-output coupling matrices are full-column rank in addition to some assumptions on noises. No other knowledge about system matrices and covariance matrices is required.  相似文献   

8.
分数阶迭代学习控制的收敛性分析   总被引:2,自引:0,他引:2  
本文将传统的迭代学习控制时域和频域分析方法扩展到一类针对分数阶非线性系统的分数阶迭代学习控制时域分析方法.提出了一类新的分数阶迭代学习控制框架并简化了收敛条件,且证明了常增益情况下两类分数阶迭代学习控制收敛条件的等价性问题.该讨论进一步引出了如下两个结果:分数阶不确定系统的分数阶自适应迭代学习控制的可学习区域以及理想带阻型分数阶迭代学习控制的框架.上述结果均得到了仿真验证.  相似文献   

9.
针对线性时不变离散系统的跟踪问题提出一种高阶参数优化迭代学习控制算法.该算法通过建立考虑了多次迭代误差影响的参数优化目标函数,求解得出优化后的时变学习增益参数.从理论上证明了:对于线性离散时不变系统,该算法在被控对象不满足正定性的松弛条件下仍可保证跟踪误差单调收敛于零.同时,采用之前多次迭代信息的高阶算法具有更好的收敛性和鲁棒性.最后利用一个仿真实例验证了算法的有效性.  相似文献   

10.
时滞非线性系统的采样迭代学习控制   总被引:1,自引:0,他引:1  
针对一类输入时滞非线性系统, 提出了一种采样迭代学习控制算法, 该算法不含跟踪误差的微分信号, 给出了学习算法收敛的充分条件, 当不存在初始误差、不确定扰动时, 算法在采样点处能实现对期望输出信号的完全跟踪, 否则, 跟踪误差一致有界, 仿真结果表明了该算法的有效性.  相似文献   

11.
非参数不确定系统约束迭代学习控制   总被引:1,自引:0,他引:1  
讨论一类非参数不确定系统的约束迭代学习控制问题.构造二次分式型障碍李雅普诺夫函数(Barrier Lyapunov functions),用于学习控制器设计.控制方案采用鲁棒方法与学习机制相结合的手段处理非参数不确定性,鲁棒方法对处理后的不确定性的界予以补偿,学习机制对处理后的不确定性进行估计.可实现系统状态在整个作业区间上完全跟踪参考轨迹,并使得系统误差的二次型在迭代过程中囿于预设的界内,进而在运行过程中实现状态约束.提出的迭代学习算法包括部分限幅与完全限幅学习算法.采用这种BLF约束控制系统有利于提高控制系统中设备安全性.仿真结果用于验证所提出控制方法的有效性.  相似文献   

12.
针对基于迭代学习控制的交通信号控制方法对于路网中存在的非重复性实时干扰不能进行有效处理的问题,本文在基于迭代学习控制的交通信号控制方法基础上,结合模型预测控制滚动优化和实时校正的特点,提出了一种基于迭代学习与模型预测控制的交通信号混合控制方法.该方法在有效利用交通流周期性特征改善路网交通状况的同时,可借助模型预测控制的...  相似文献   

13.
迭代学习控制能够实现期望轨迹的完全跟踪而被广泛关注,但是采样迭代学习控制成果目前还比较少。针对一类有相对阶和输出延迟的非线性采样系统,研究了高阶迭代学习控制算法。利用Newton-Leibniz公式、贝尔曼引理和Lipschiz条件证明了当系统的采样周期足够小,迭代学习初态严格重复,且学习增益满足要求的条件,那么系统输出在采样点上收敛于期望输出。对一阶和二阶学习算法的仿真表明高阶算法在收敛速度上比一阶有明显改善。  相似文献   

14.
In order to cope with the problem of the robustness conditions dependence on system parameters information, this paper investigates a data-based iteration learning control (ILC) for multiphase batch processes with different dimensions and system uncertainty. Firstly, by minimizing the residual between the actual subsystem output and the approximated subsystem output, a gradient-type approximation law is designed to approximate the system lower triangular parameters matrix and initial state. Secondly, by minimizing the approximated tracking error between the desired trajectory and the approximated output, a data-based ILC is constructed in an interactive mode with the approximation law. Finally, the boundedness of the approximation error of the real system parameters from the approximated parameters is derived by means of vector norm theory, while the unconditional robustness of the proposed data-based ILC is proved. Simulation results illustrate the effectiveness and practicability of the proposed data-based ILC.  相似文献   

15.
传统的迭代学习控制机理中,积分补偿是典型的策略之一,但其跟踪效用并不明确.本文针对连续线性时不变系统,对传统的PD–型迭代学习控制律嵌入积分补偿,利用分部积分法和推广的卷积Young不等式,在Lebesguep范数意义下,理论分析一阶和二阶PID–型迭代学习控制律的收敛性态.结果表明,当比例、积分和导数学习增益满足适当条件时,一阶PID–型迭代学习控制律是单调收敛的,二阶PID–型迭代学习控制律是双迭代单调收敛的.数值仿真验证了积分补偿可有效地提高系统的跟踪性能.  相似文献   

16.
In iterative learning control (ILC), a lifted system representation is often used for design and analysis to determine the convergence rate of the learning algorithm. Computation of the convergence rate in the lifted setting requires construction of large N×N matrices, where N is the number of data points in an iteration. The convergence rate computation is O(N2) and is typically limited to short iteration lengths because of computational memory constraints. As an alternative approach, the implicitly restarted Arnoldi/Lanczos method (IRLM) can be used to calculate the ILC convergence rate with calculations of O(N). In this article, we show that the convergence rate calculation using IRLM can be performed using dynamic simulations rather than matrices, thereby eliminating the need for large matrix construction. In addition to faster computation, IRLM enables the calculation of the ILC convergence rate for long iteration lengths. To illustrate generality, this method is presented for multi-input multi-output, linear time-varying discrete-time systems.  相似文献   

17.
The learning transient and tracking accuracy of phase lead compensation iterative learning control are determined by its three parameters: learning gain, system learnable bandwidth and lead step. Because of the model inaccuracy, the learnable bandwidth is often chosen as a conservative value, which often degrades the learning performance. In this article, the learning transient is analysed and the tuning of learnable bandwidth and lead step are developed to achieve good learning transient and tracking accuracy simultaneously. The attractive properties include that the less dependence on system model and that the tracking error during this process keeps at a very low level. Experimental results on an industrial robot are presented to verify the tuning process.  相似文献   

18.
本文首先回顾了迭代学习控制中初始状态漂移问题和单调收敛性分析的研究技术.其次,综述了高阶迭代学习控制机制及其收敛速度比较和有效性.再次,评述了重复运行大系统和变幅值大工业过程的迭代学习控制机理.最后,展望了长期学习控制的研究趋势等.  相似文献   

19.
针对一类含不确定参数及未知扰动的高阶非线性系统,采用类Lyapunov方法,结合部分限幅学习律和滑模控制的优点,提出一种新的滑模鲁棒迭代学习控制算法.根据系统中不确定量的特性,将系统中的不确定性划分为两类:仅沿时间轴变化的不确定性和仅沿迭代轴变化的不确定性.前者采用迭代辨识方法处理,后者采用迭代滑模技术解决.在整个作业区间上,随着迭代次数的增加,控制算法确保系统的跟踪误差收敛到一个界内,控制器信号无抖颤,且闭环系统中其余变量一致有界.当系统扰动仅沿时间轴变化时,系统跟踪误差及其各阶导数沿迭代轴渐近收敛到0,实现系统各个状态的精确跟踪.相比利用连续函数近似法的传统滑模控制,该算法对未知扰动具有更好的鲁棒性.理论证明和仿真结果都说明了该算法的有效性.  相似文献   

20.
迭代学习控制的研究现状   总被引:1,自引:0,他引:1  
迭代学习控制经历了二十多年的发展历程,已经取得了很多研究成果,现已成为智能控制的一个重要研究方向,并得到越来越广泛的应用.本文对迭代学习控制的基本原理和主要研究问题从发展的角度作了详细阐述,并对其应用作了细致介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号