首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Output tracking controller design problem is dealt with for a class of nonlinear systems in strict-feedback form in the presence of time-varying nonlinear uncertainties and unmodeled dynamics with multi-operation points. A new method based on signal compensation is proposed to design a robust controller, which consists of a nominal controller and a robust compensator. It is shown that semiglobal robust tracking property can be achieved. A new feature of our results is that the controller is a linear and time-invariant one and “explosion of complexity” problem is avoided.  相似文献   

3.
This paper proposes a robust output feedback controller for a class of nonlinear systems to track a desired trajectory. Our main goal is to ensure the global input-to-state stability (ISS) property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. Our approach consists of constructing a nonlinear observer to reconstruct the unavailable states, and then designing a discontinuous controller using a back-stepping like design procedure to ensure the ISS property. The observer design is realized through state transformation and there is only one parameter to be determined. Through solving a Hamilton–Jacoby inequality, the nonlinear control law for the first subsystem specifies a nonlinear switching surface. By virtue of nonlinear control for the first subsystem, the resulting sliding manifold in the sliding phase possesses the desired ISS property and to certain extent the optimality. Associated with the new switching surface, the sliding mode control is applied to the second subsystem to accomplish the tracking task. As a result, the tracking error is bounded and the ISS property of the whole system can be ensured while the internal stability is also achieved. Finally, an example is presented to show the effectiveness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
电液伺服系统的多滑模鲁棒自适应控制   总被引:7,自引:0,他引:7  
针对一类参数与外负载非匹配不确定的非线性高阶系统,提出了一种基于逐步递推方法的多滑模鲁棒自适应控制策略.应用逐步递推的多滑模控制方法简化了高阶系统的控制问题,同时在自适应控制中加入鲁棒控制的方法,以消除不确定性对控制性能的影响.首先利用逐步递推方法与状态反馈精确线性化理论,得出确定系统的多滑模控制器设计方法;然后基于Lyapunov稳定性分析方法,给出不确定系统的参数自适应律,及鲁棒自适应控制器的设计方法.本文把该控制策略应用到电液伺服系统的位置跟踪控制中,仿真结果显示,该控制方法具有较强的鲁棒性及良好的跟踪效果.  相似文献   

5.
This paper considers robust stochastic stability and PI tracking control problem for Markov jump systems with both input delay and an unknown nonlinear function. Based on the traditional PI control strategy, a new controller design scheme is proposed for nonlinear time-delay Markov jump systems which can realize multiple control objectives including robust stochastic stability and tracking performance. By using the Lyapunov stability theory and LMI algorithms, a sufficient condition for the solution to robust stochastic stability and tracking control problem is obtained. Then, the desired controller with PI structure is designed, which ensures the resulting closed-loop system is robust stochastically stable and the system state has favorable tracking performance. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.  相似文献   

6.
殷春武  侯明善  李明翔 《控制与决策》2017,32(10):1879-1886
针对控制输入有界的变参数广义高阶非线性系统跟踪控制问题,给出一种多环递归跟踪的鲁棒控制方法.通过分层引入虚拟跟踪器,将高阶系统分解为多个独立子系统;内环虚拟跟踪器使内环输出指数收敛于外环虚拟输入,最内环设计自适应控制器补偿参数摄动和外部干扰,并保证输出指数收敛于外环虚拟输入;多环递归跟踪实现系统输出精确跟踪期望输入,理论证明闭环系统的全局渐近收敛性.数值仿真验证了多环跟踪控制器的可行性和合理性.  相似文献   

7.
李小华  包海强  刘辉 《控制与决策》2024,39(7):2215-2223
研究一类具有外部扰动的非线性系统在初始跟踪条件未知情况下的预设性能有限时间有界$H_\infty$控制问题.针对预设性能控制设计,提出一个新的误差转换思想,并据此设计新的预设性能函数,解决预设性能控制依赖于系统被约束量初始条件的问题.基于所提出预设性能函数、有限时间控制理论以及有界$H_\infty$的设计方法,获得系统无需初始跟踪条件的预设性能有限时间有界$H_\infty$控制器,同时解决非线性系统在有界稳定情况下难以设计$H_\infty$控制器的问题,保证跟踪误差以预先设定的动态性能在有限时间内收敛至平衡点附近的小邻域内,并对外部干扰有较强的鲁棒性能.  相似文献   

8.
参数不确定机器人分散鲁棒跟踪控制   总被引:3,自引:1,他引:3  
提出了一种新的参数不确定机器人分散控制器设计方法.首先将关节子系统的动力学模型分解为人工标称模型和非线性时变不确定模型两部分;然后分别设计相应的标称控制器和鲁棒补偿器.标称控制器使得标称闭环系统具有理想的跟踪性能;鲁棒补偿器可以抑制参数不确定和关节间非线性耦合等因素的影响,实现鲁棒跟踪.所设计的控制器只需要局部关节的位置反馈,具有易于实现和可在线调整的优点.仿真结果说明了该方法的有效性.  相似文献   

9.
The robust output tracking control problem is considered for single-input single-output plants with multiple operating points and with both parametric and unstructured uncertainties (i.e. interval parameter uncertainties and norm-bounded unmodelled dynamics). The parametric uncertainties can involve parameter perturbations as well as degree variations. The plant with uncertainties is assumed to be of minimum phase, but is not required to have a fixed number of unstable poles. A new method is presented by which a linear time-invariant robust controller is designed in two steps: first, a nominal controller is designed to get exact output tracking for the nominal plant; then, a robust compensator is added to achieve robust properties. It is shown that robust stability, robust static state property, robust transient property and robust tracking property can be achieved simultaneously. A computationally tractable design procedure is presented. A salient feature of our results, shown in the present paper, is that we can tell the users how to tune on-line the parameters of the controller with the proposed structure.  相似文献   

10.
In this paper, a robust adaptive tracking control scheme is developed for servo mechanisms with nonlinear friction dynamics. A continuously differentiable friction model is used to capture the friction behaviors (e.g. Stribeck effect, Coulombic friction and Viscous friction). The robust integral of the sign of the error (RISE) feedback term is employed to design an innovative adaptive controller to compensate nonlinear friction and bounded disturbances. To reduce the effect of noise pollution, the desired trajectory is employed to replace the output signal in controller design. The developed adaptive controller can guarantee the asymptotic tracking performance for nonlinear servo mechanisms in the presence of nonlinear friction and bounded disturbances. Comparative experimental results are used to validate the effectiveness of the developed control algorithm.  相似文献   

11.
船舶航向非线性系统鲁棒跟踪控制   总被引:7,自引:2,他引:5  
对船舶航向非线性系统, 提出了一种基于神经网络方法的鲁棒跟踪控制器. 系统由船舶运动非线性响应模型和舵机伺服系统串联构成, 其中运动响应模型考虑了建模误差和外界干扰力等非匹配不确定性. 对建模误差和期望舵角的一阶导数项应用在线二层神经网络予以辨识和补偿, 不确定性干扰项处理应用L2增益设计. 采用Lyapunov函数递推法, 得到包括神经网络权值算法在内的跟踪控制器. 跟踪误差和神经网络权值误差的一致终值有界性保证了系统的鲁棒稳定性, 合理的控制器参数选择保证了控制精度. 仿真结果验证了控制器的有效性.  相似文献   

12.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an operator‐based robust nonlinear control method for nonlinear plants with uncertain non‐symmetric backlash. The control design is achieved by introducing operator‐based robust right coprime factorization. In more detail, using an operator‐theoretic approach, the uncertain non‐symmetric backlash is described as a generalized Lipschitz operator and a bounded parasitic term. Since the generalized Lipschitz operator is unknown, a new robust condition using robust right coprime factorization is proposed to guarantee robust stability of the controlled plant with the uncertain backlash. As a result, based on the proposed robust condition, a stabilized plant is obtained. For eliminating the effect from the parasitic term to ensure the output tracking performance, a nonlinear tracking controller is designed. Simulation results are presented to validate the effectiveness of the proposed control design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
In this paper, a novel robust nonlinear tracking control scheme is proposed for the yaw channel of an unmanned-aerial-vehicle helicopter that is non-affine in the control input. By a novel dynamic modeling technique, the non-affine nonlinear systems are approximated to facilitate the desired control design. In the controller design procedure, the terminal sliding model control method is introduced to deal with the unknown uncertainties/disturbances. Moreover, filter and disturbance estimator are combined to further reduce the chattering. A systematic procedure is developed and related theoretical and practical issues are discussed. The proposed nonlinear tracking control scheme can guarantee the asymptotic output tracking of the closed-loop control systems in spite of unknown uncertainties/disturbances. Finally, the simulation results on the dynamic model of a real helicopter-on-arm are provided to demonstrate the effectiveness of the proposed new control techniques.  相似文献   

15.
A finite-time disturbance observer-based robust control method is proposed for output tracking of the Inteco threetank system in the presence of mismatched uncertainties. The controller is designed in a backstepping manner. At each step of the virtual controller design, a robust feedback controller with some effective nonlinear damping terms is designed so that the system states remain in the feasible domain. The nonlinear uncertainty is compensated by a finite-time disturbance observer. And to avoid the shortcoming of “explosion of terms”, the dynamic surface control technique which employs a low-pass filter is adopted at each step of the virtual controller design. Attention is paid to reducing the measurement noise effects and to initialization technique of the system states and reference output trajectory. Theoretical analysis is performed to clarify the control performance. And the theoretical results are verified based on the experimental studies on the real Inteco three-tank system.  相似文献   

16.
This paper deals with the robust adaptive control of a class of nonlinear systems in the presence of parametric uncertainties and dominant uncertain nonlinearities. The proposed controller utilizes the robust adaptive control to guarantee uniform boundedness and convergence of tracking errors. In addition, an adaptive fuzzy logic system is used as a universal approximator to reduce the model uncertainties coming from uncertain nonlinearities and to improve tracking performance. The approach does not require the matching condition imposed on control systems by using the backstepping design procedure, and provides boundedness of tracking errors under poor parameter adaptation. The method can be applied to a class of single-input single-output (SISO) nonlinear systems, transformable to a parametric-strict-feedback form  相似文献   

17.
随机时滞马尔可夫跳跃系统的比例-积分跟踪控制   总被引:1,自引:0,他引:1  
针对具有时变时滞和未知非线性的随机马尔可夫跳变系统,基于传统的PI控制策略和线性矩阵不等式算法,提出一种具有随机稳定性能、跟踪性能和鲁棒性能的多目标控制器设计方案.运用Lyapunov稳定性理论并引入L<,1>性能指标,构造出具有PI结构的跟踪控制器,保证了随机马尔可大跳跃系统的稳定性和跟踪性能,实现了系统跟踪性能的优...  相似文献   

18.
In this paper, a discontinuous projection‐based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi‐strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time‐history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A new robust nonlinear controller is presented and applied to a planar 2-DOF parallel manipulator with redundant actuation. The robust nonlinear controller is designed by combining the nonlinear PD (NPD) control with the robust dynamics compensation. The NPD control is used to eliminate the trajectory disturbances, unmodeled dynamics and nonlinear friction, and the robust control is used to restrain the model uncertainties of the parallel manipulator. The proposed controller is proven to guarantee the uniform ultimate boundedness of the closed-loop system by the Lyapunov theory. The trajectory tracking experiment with the robust nonlinear controller is implemented on an actual planar 2-DOF parallel manipulator with redundant actuation. The experimental results are compared with the augmented PD (APD) controller, and the proposed controller shows much better trajectory tracking accuracy.  相似文献   

20.
In this note, robust stabilization and tracking performance of operator based nonlinear feedback control systems are studied by using robust right coprime factorization. Specifically, a new condition of robust right coprime factorization of nonlinear systems with unknown bounded perturbations is derived. Using the new condition, a broader class of nonlinear plants can be controlled robustly. When the spaces of the nonlinear plant output and the reference input are different, a space change filter is designed, and in this case this note considers tracking controller design using the exponential iteration theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号