首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the asynchronous switching control problem for continuous-time switched linear systems via dynamic output-feedback, where the dynamic output-feedback controller contains an impulsive reset law to reset the controller state. A time-varying multiple Lyapunov-like-function (MLF) approach is employed to analyze the stability and weighted L2-gain of the closed-loop systems. The switching stability criteria for the closed-loop systems are established in terms of linear matrix inequalities (LMIs), which are dependent on the upper and lower bounds of the switching interval and the asynchronous delays. The switching logic is designed to guarantee the closed-loop systems achieving the weighted L2-gain performance. Two numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

2.
This paper investigates the output-feedback control design problem for a class of switched Takagi–Sugeno fuzzy large-scale systems with non-measurable premise variables. The considered fuzzy large-scale systems consist of several interconnected subsystems with different switching modes and there exists the asynchronous switching between the system switching modes and the controller switching modes. A decentralised state observer is proposed to estimate the unmeasured states, and a new output-feedback decentralised control scheme is developed by using the state observers and the switching functions. Based on the theory of Lyapunov stability and average dwell-time methods, the sufficient conditions of ensuring the switched control system stability are proposed and proved, which are formulated in the form of linear matrix inequalities. An applicable example is provided to show the effectiveness of the obtained theoretical results.  相似文献   

3.
This paper investigates the mixed H and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.  相似文献   

4.
For systems with switched linear dynamics and affected by persistent switched exosignals, we propose a new hybrid control approach to achieve not only closed‐loop stability but also tracking and/or rejection of persistent references/disturbances generated by multiple exosystems, namely, output regulation. It is assumed that both controlled plant and exosystem are described by switched linear models. The proposed hybrid controller/output regulator is specified as a switching impulsive system, where the controller states will undergo impulsive jumps at each switching instant. Based on the average dwell time switching technique, it has been shown how to completely reduce the synthesis problem of the hybrid controller to a set of linear matrix equations and linear matrix inequalities. Both continuous‐time and discrete‐time cases are discussed. To demonstrate its usefulness, the proposed hybrid control method has been applied to solve the output regulation problem for a mechanical system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The output-feedback controller synthesis issue for a class of continuous-time switched linear systems via average dwell time switching with constrained controls and output is addressed. First, we focus on the output-feedback stabilisation by decomposing control gain matrix. Second, the stabilisation problem with sign-restricted controls while imposing positivity and stability on closed-loop system is solved, then the results extend to asymmetrically bounded controls and constrained outputs. All the derived conditions are formulated as linear programming. Finally, numerical examples are given to show the applicability of the proposed methods.  相似文献   

6.
This paper deals with the issue of reliable control for discrete‐time switched linear systems with faulty actuators by utilizing a multiple Lyapunov functions method and estimate state‐dependent switching technique. A solvability condition for the reliable control problem is given in terms of matrix inequality with an extra matrix variable. This condition allows the reliable control problem for each individual subsystem to be unsolvable. For each subsystem of such a switched system, we design an observer and an observer‐based controller. A switching rule depending on the observer state is designed which, together with the controllers, can guarantee the stability of the closed‐loop switched system for all admissible actuator failures. The observers, controllers, and switching law are explicitly computed by solving linear matrix inequalities (LMIs). The proposed design method is illustrated by two numerical examples.  相似文献   

7.
In this paper, we investigate the stability analysis problem of switched impulsive nonlinear systems and several stabilization problems of switched discrete‐time linear systems are studied. First, sufficient conditions ensuring globally uniformly asymptotically stability of switched nonlinear impulsive system under arbitrary and DDT (dynamical dwell time which defines the length of the time interval between two successive switchings) switching are derived, respectively. In the DDT switching case, we first consider the switched system composed by stable subsystems, then we extend the results to the case where not all subsystems are stable. The stabilizations of switched discrete‐time linear system under arbitrary switching, DDT switching and asynchronous switching are investigated respectively. Based on the stability analysis results, the control synthesis consists of controller design for each subsystem and state impulsive jumping generators design at switching instant. With the aid of the state impulsive jumping generators at switching instant, the ‘energy’ produced by switching can be minimized, which leads to less conservative results. Several numerical examples are given to illustrate the proposed results within this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Tracking control for switched linear systems with time‐delay is investigated in this paper. Based on the state‐dependent switching method, sufficient conditions for the solvability of the tracking control problem are given. We use single Lyapunov function technique and a typical hysteresis switching law to design a tracking control law such that the H model reference tracking performance is satisfied. The controller design problem can be solved efficiently by using linear matrices inequalities. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. It is highly desirable that a non‐switched time‐delay system can not earn such property. Simulation example shows the feasibility and validity of the switching control law. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
In this paper, the approach of the control bumps limitation is generalised and applied to the problem of H bumpless transfer for a class of switched linear parameter-varying (LPV) systems. The H bumpless transfer problem is to design a controller with the amplitude limitation and a parameter and modes-dependent switching law to reduce control bumps of the switched LPV systems and satisfy an H performance index. The key point is to guarantee the bumps limitation constraint of the switched LPV systems by dual design of controllers and a switching law, even though the constraint for each subsystem is unsatisfied. First, a set of switching signals depending on parameters and modes are designed, and a family of switched LPV controllers with the bumps limitation objective are developed via multiple parameter-dependent Lyapunov functions. Then, a sufficient condition ensuring the H bumpless transfer performance for a switched LPV system is presented in the format of numerically tractable conditions. Finally, the effectiveness of the proposed control design scheme is illustrated by its application to the control design of an aero-engine.  相似文献   

10.
研究一类带多控制器和多传感器离散时间线性系统的无差拍控制.对能控系统,通过适当的状态坐标变换获得系统矩阵的块三角结构,再设计状态反馈和周期切换策略使得状态反馈矩阵在有限周期内为零,从而保证闭环系统的无差拍稳定.进一步,对能观系统,设计具有有限时间精确估计的动态输出反馈,通过适当的周期切换策略实现闭环系统的无差拍稳定.最后,给出一个例子以验证所提设计方法的有效性.  相似文献   

11.
This paper presents a new synthesis method for both state and dynamic output feedback control of a class of hybrid systems called piecewise-affine (PWA) systems. The synthesis procedure delivers stabilizing controllers that can be proven to give either asymptotic or exponential convergence rates. The synthesis method builds on existing PWA stability analysis tools by transforming the design into a closed-loop analysis problem wherein the controller parameters are unknown. More specifically, the proposed technique formulates the search for a piecewise-quadratic control Lyapunov function and a piecewise-affine control law as an optimization problem subject to linear constraints and a bilinear matrix inequality. The linear constraints in the synthesis guarantee that sliding modes are not generated at the switching. The resulting optimization problem is known to be hard, but suboptimal solutions can be obtained using the three iterative algorithms presented in the paper. The new synthesis technique allows controllers to be designed with a specified structure, such as a combined regulator and observer. The observers in these controllers then enable switching based on state estimates rather than on measured outputs. The overall design approach, including a comparison of the synthesis algorithms and the performance of the resulting controllers, is clearly demonstrated in four simulation examples.  相似文献   

12.
This paper concerns the asynchronously switched control problem for a class of switched linear systems with average dwell time (ADT) in both continuous-time and discrete-time contexts. The so-called asynchronous switching means that the switchings between the candidate controllers and system modes are asynchronous. By further allowing the Lyapunov-like function to increase during the running time of active subsystems, the extended stability results for switched systems with ADT in nonlinear setting are first derived. Then, the asynchronously switched stabilizing control problem for linear cases is solved. Given the increase scale and the decrease scale of the Lyapunov-like function and the maximal delay of asynchronous switching, the minimal ADT for admissible switching signals and the corresponding controller gains are obtained. A numerical example is given to show the validity and potential of the developed results.  相似文献   

13.
This paper addresses the state‐tracking model reference adaptive control problem for a class of switched systems with parametric uncertainties, where switchings between subsystems and designed adaptive controller are asynchronous. First, we establish a stability criterion for a switched reference model and convert the state‐tracking problem into the stability problem of an error switched system. Then, an adaptive law is designed, and the global practical stability of the error switched system is guaranteed under a class of switching signals characterized by a dwell‐time condition. An electrohydraulic system is given as an example to demonstrate the feasibility and effectiveness of the proposed design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This article is concerned with the problem of state feedback control for a class of discrete-time switched singular systems with time-varying state delays under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the system modes. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence a stabilising switching law is first derived to guarantee the regularity, causality and exponential stability of the closed-loop system in the presence of asynchronous switching. The stabilising switching law is characterised by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

15.
This article is devoted to the output-feedback ? control problem for switched linear systems subject to actuator saturation. We consider both continuous- and discrete-time switched systems. Using the minimal switching rule, nonlinear output feedbacks expressed in the form of quasi-linear parameter varying system are designed to satisfy a pre-specified disturbance attenuation level defined by the regional ?2 (?2)-gains over a class of energy-bounded disturbances. The conditions are expressed in bilinear matrix inequalities and can be solved by line search coupled with linear matrix inequalities optimisation. A spherical inverted pendulum example is used to illustrate the effectiveness of the proposed approach.  相似文献   

16.
研究异步切换下时滞切换正系统的有限时间控制问题,即针对控制器切换滞后于子系统切换形成的异步现象,基于平均驻留时间切换方法对切换正系统开展有限时间镇定研究.首先,将每个正子系统运行的区间划分为子系统与控制器匹配和失配区间,并构造多余正Lyapunov-Krasovskii泛函;其次,基于有限时间稳定理论,实现平均驻留时间切换律及异步时滞切换正系统有限时间镇定控制器的联合设计,并给出连续时间和离散时间两种情形下系统有限时间镇定的充分条件;最后,通过两个仿真例子验证所提出方法的有效性.  相似文献   

17.
This paper addresses the problem of robust stabilization and tracking control for a class of switched nonlinear systems via the multiple Lyapunov functions (MLFs) approach. First, a state feedback controller and a state dependent switching law are designed to globally asymptotically stabilize the switched system via linear matrix inequalities (LMIs). The main objective of this paper is to develop a tracking control approach that assures global asymptotic output and state tracking with zero tracking error in the steady state. Then, the tracking control is formulated such that the robust H tracking performance is achieved. Finally, a simulation example is provided to demonstrate the effectiveness of the main method.  相似文献   

18.
This paper focuses on the model reference state unilateral tracking control problem of positive switched systems. The state unilateral tracking means that the state always keeps in the same direction of the reference objective, either above or below. This feature makes unilateral tracking play a role of avoiding the overshoot. Via the dual design of both the controller and the switching signal, the state unilateral tracking control problem with L1-gain performance for positive switched systems is solved through adopting multiple linear co-positive Lyapunov functions technique. The design method is applicable to the case that the unilateral tracking control problem is unsolvable for any subsystem of a positive switched system. Moreover, two techniques are presented in order to deal with the state unilateral tracking problem. Finally, a practical example demonstrates the validity of the presented result.  相似文献   

19.
It has become a common practice to employ networks in control systems for connecting controllers and sensors/actuators on controlled plants and processes. A network-based switched control system, as a special case of networked control systems, is studied. Such a system is represented with network-induced delays and packet dropout as a switched delay system. Sufficient conditions for robust exponential stability are derived for a class of switching signals with average dwell time. A stabilization design for continuous-time, linear switched plant with nonlinear perturbation under a given communication network via a hybrid state feedback controller is proposed. A hybrid controller design is network-dependent and given in terms of linear matrix inequalities.  相似文献   

20.
This paper aims at characterizing the most destabilizing switching law for discrete-time switched systems governed by a set of bounded linear operators. The switched system is embedded in a special class of discrete-time bilinear control systems. This allows us to apply the variational approach to the bilinear control system associated with a Mayer-type optimal control problem, and a second-order necessary optimality condition is derived. Optimal equivalence between the bilinear system and the switched system is analyzed, which shows that any optimal control law can be equivalently expressed as a switching law. This specific switching law is most unstable for the switched system, and thus can be used to determine stability under arbitrary switching. Based on the second-order moment of the state, the proposed approach is applied to analyze uniform mean-square stability of discrete-time switched linear stochastic systems. Numerical simulations are presented to verify the usefulness of the theoretic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号