首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple strategy and low cost control for the switching mode rectifier to work simultaneously as a power factor corrector and an active power filter (APF) to reduce current harmonics drawn from the nonlinear load are analysed and presented in this paper. The principal component of the control circuit is an Intel 80196MC microcontroller that performs the dc bus voltage and line current control. The sliding mode control is used in the current loop to achieve fast line current dynamics. The source currents only are measured in the proposed control scheme instead of both the source and load currents needed in the conventional control approach. A simple proportional-integral control is adopted in the voltage loop to achieve slow dc bus dynamics. The proposed control strategy can achieve a high power factor and low current harmonics. No dedicated APF is needed in the proposed control strategy. To demonstrate the effectiveness of the integrated power factor compensator for elimination of reactive power and current harmonics, software simulation and hardware tests are performed.  相似文献   

2.
郭伟峰  杨世彦  杨威   《电子器件》2006,29(4):1139-1142
简要分析了并联有源电力滤波器的工作原理,选取含有裂相电容的三桥臂电压源型逆变器作为系统主电路,输出电流采用动态滞环控制。针对三相四线系统,且考虑到电网电压畸变和不对称的情况,给出了一种基于瞬时功率理论实现无功功率和谐波全补偿的控制策略,并使用Matlab对系统进行了仿真。  相似文献   

3.
郭伟峰  杨世彦  杨威   《电子器件》2006,29(4):1139-1142,1146
简要分析了并联有源电力滤波器的工作原理,选取含有裂相电容的三桥臂电压源型逆变器作为系统主电路,输出电流采用动态滞环控制。针对三相四线系统,且考虑到电网电压畸变和不对称的情况,给出了一种基于瞬时功率理论实现无功功率和谐波全补偿的控制策略,并使用Matlab对系统进行了仿真。  相似文献   

4.
This paper presents a model-based controller for a three-phase four-wire shunt active filter, which uses a three-leg split-capacitor topology to implement the voltage source inverter. The controller is aimed to compensate reactive power and harmonic distortion in the general case of distorted and unbalanced source voltages and load currents, including distorted loads connected between a phase and the neutral line. In addition, the controller is able to compensate for the homopolar component of the load current, that is, the current flowing to the source via the neutral line can be considerably reduced without modifying the actual topology. The complete model in (fixed frame) alphabetagamma-coordinates is presented. Special attention is given to the homopolar component (referred here as the gamma-component) of the line current, source voltage and control input, which are instrumental for the control design purpose. Experimental results in a 2 kVA prototype are provided to illustrate the benefits of the proposed solution.  相似文献   

5.
为了提高有源滤波器的谐波补偿效果,设计了一种新型滑模控制器,用于三相三线制并联有源滤波器的参考电流跟踪控制.谐波电流检测方法采用基于瞬时无功功率理论的谐波电流检测方法,能快速、准确的检测出负载电流中的谐波分量.直流侧电压控制方法采用PI控制方法实现.Simulink仿真结果显示,与传统的滞环比较控制方法相比,所设计的新型滑模控制方法能够有效的降低跟踪误差,提高有源滤波器的谐波补偿效果.  相似文献   

6.
This paper presents the design and implementation of a Linear Quadratic Regulator (LQR) with Integral action (LQRI) for a three-phase three-wire shunt active filter (SAF). The integral action is added so as to cancel the steady-state errors for reference tracking or disturbance rejection, knowing that the standard LQR provides only proportional gains. The controller is designed to achieve dc bus voltage regulation and harmonics and reactive power compensation. The converter model is set in the $d{-}q$ rotating reference frame. The latter is augmented with the integral of the $q$ component of the SAF currents and dc bus voltage to achieve integral action. The controller's performance depends on the weighting matrix, which is chosen to ensure satisfactory response. The converter is controlled as a whole, i.e., a multi-input–multioutput system and a fixed pulsewidth modulation at 10 kHz is used to generate the gating signals of the power devices. The system is tested for harmonics, reactive power, and load unbalance compensation for balanced/unbalanced loads. The experimental results obtained with a digital signal processor-based implementation of the controller on the DS1104 of dSPACE show good performance in terms of dc bus voltage regulation (small overshoot and very fast time response) and a low total harmonic distortion of ac line currents.   相似文献   

7.
In this paper, a novel controller with fixed modulation index (MI) and variable dc capacitor voltage reference to minimize voltage and current harmonics is presented for a distribution static synchronous compensator (STATCOM). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a dc capacitor and is used to provide reactive power compensation and regulate ac system bus voltage with minimum harmonics. A systematic design procedure based on pole-zero cancellation, root locus method, and pole assignment method has been developed to determine proper parameters for the current regulator, the dc voltage controller, and the ac voltage controller of the STATCOM. With the proposed STATCOM controller, harmonic distortions in the inverter output current and voltage can be reduced since the MI is held constant at unity in steady state. In addition, a fast adjustment in the STATCOM output reactive power is achieved to regulate the ac bus voltage through the adjustment of the dc voltage reference during the transient period. Simulation and experimental results for the steady-state operating condition and transient operating conditions for the system subjected to a reactive current reference step change, a three-phase line to neutral fault, and a step load change are presented to demonstrate the effectiveness of the proposed controller.  相似文献   

8.
In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics in series-type active power filter systems combined with shunt passive filters is proposed, which focuses on reducing the delay time effect required to generate the reference voltage. Using digital all-pass filters, the positive voltage sequence component out of the unbalanced source voltage is derived. The all-pass filter can give a desired phase shift and no magnitude reduction, unlike conventional low-or high-pass filters. Based on this positive-sequence component, the source phase angle and the reference voltage for compensation are derived. This method is easier to implement and to tune controller gains. In order to reduce the delay time effect in the voltage control loop, the reference voltage is predicted a sampling period ahead. The validity of the proposed control scheme has been verified by experimental results.  相似文献   

9.
This paper deals with the hardware implementation of a shunt active filter (SAF) for compensation of reactive power, unbalanced loading, and harmonic currents. SAF is controlled using an adaptive-linear-element (Adaline)-based current estimator to maintain sinusoidal and unity-power-factor source currents. Three-phase load currents are sensed, and using least mean square (LMS) algorithm-based Adaline, online calculation of weights is performed and these weights are multiplied by the unit vector templates, which give the fundamental-frequency real component of load currents. The dc bus voltage of voltage source converter (VSC) working as a SAF is maintained at constant value using a proportional–integral controller. The switching of VSC is performed using hysteresis-based pulsewidth-modulation indirect-current-control scheme, which controls the source currents to follow the derived reference source currents. The practical implementation of the SAF is realized using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. The MATLAB-based simulation results and implementation results are presented to demonstrate the effectiveness of the SAF with Adaline-based control for load compensation.   相似文献   

10.
The performance and dynamic characteristics of a three-phase active power filter operating with fixed switching frequency is presented and analyzed in this paper. The proposed scheme employs a PWM voltage-source inverter and has two important characteristics. First, it operates with fixed switching frequency, and second, it can compensate the reactive power and the current harmonic components of nonlinear loads. Reactive power compensation is achieved without sensing and computing the reactive component of the load current, thus simplifying the control system. Current harmonic compensation is done in time domain. The principles of operation of the proposed active power filter along with the design criteria of the power and control circuit components are discussed in detail. Finally, experimental results obtained from a 5 kVA prototype confirm the feasibility and the features of the proposed system  相似文献   

11.
In this paper, modelling and hardware implementation of three-phase interleaved inverter-based shunt active power filter (SAPF) is proposed to mitigate current harmonics, reactive power for ensuring unity power factor and load balancing without shoot-through effect. Shoot-through effect is one of the hazardous issues in conventional voltage source inverters such as damage of power electronic switches, electromagnetic interference, ringing in the power circuitry. The present power system has inevitable non-linear loads which create large variations in the supply voltage distortions. Therefore, the compensation capability and efficiency of the SAPFs degrades. A novel predictive tuned filter is proposed in this paper to estimate the variations in the amplitude of supply voltage, frequency and harmonics for extracting the fundamental voltage signal. The fundamental extracted signal is further processed for reference current generation using generalized p-q theory. The performance of the proposed system is simulated using MATLAB®/Simulink environment and tested under different supply voltage conditions. The simulation results have been validated by developing a prototype in the laboratory by using a dSPACE1104 controller. It is found from the simulated and experimental results that the proposed system is fast, robust and accurate which improves the power quality without shoot-through problem.  相似文献   

12.
A shunt active filter based on the instantaneous active and reactive current component id-iq method is proposed. This new control method aims to compensate harmonics and first harmonic unbalance. To evaluate its relative performance, it is compared with the instantaneous active and reactive power p-q method under various mains voltage conditions and for different harmonic injection high-pass filters. Both methods are completely frequency-independent, however under distorted mains voltages the proposed method presents a better harmonic compensation performance. The system synthesis and implementation are performed. Simulation and experimental results are presented  相似文献   

13.
A new topology for active power filters (APF) using an 81-level converter is analyzed. Each phase of the converter is composed of four three-state converters, all of them connected to the same capacitor dc link voltage and their output connected in series through output transformers. The main advantages of this kind of converter are the negligible harmonic distortion obtained and the very low switching frequency operation. The single-phase equivalent circuit is analyzed and their governing equations derived. The dc link voltage control, based on manipulating the converter's voltage phase, is analyzed together with the circuit's characteristics that determine the capability to draw or deliver active and reactive current. Simulation results for this application are compared with conventional pulsewidth-modulated (PWM) converters, showing that this filter can compensate load current harmonics, keeping better-quality sinusoidal currents from the source. The simulated configuration uses a 1-F ultracapacitor in the dc link, making it possible to store energy and deliver it during short voltage dips. This is achieved by applying a modulation control to maintain a stable ac voltage during dc voltage drops. A prototype of the filter was implemented and tested, and the obtained current waveforms showed to be as good as expected.  相似文献   

14.
A wide-range active and reactive power flow controller is designed to operate the inverter in pure leading, pure lagging, and the mix with active and reactive power conditions. The key to achieving lagging power flow control is to ensure sufficiently high enough dc bus voltage to avoid duty cycle saturation. The key to achieving precision power flow control for a wide range of power level is to adopt the quasi-proportional resonant controller for the current loop and the admittance compensator to cancel the grid-voltage-induced negative power flow. In this paper, the current loop transfer function has been systematically derived for the controller design purpose. Phasor analysis was adopted to explain the need of dc bus voltage requirement. A 5-kVA grid-tie fuel cell inverter was used as the platform to show current loop controller design and admittance compensation. The proposed controller has been simulated, and the same parameters have been used for a DSP-based controller. Both simulation and hardware experimental results agree well with the theoretical analysis.   相似文献   

15.
This paper presents a fully-digital-controlled shunt active filter for harmonic termination of a power distribution system. The main purpose of the active filter based on voltage detection is not to compensate for current harmonics but to damp out harmonic propagation caused by line inductors and shunt capacitors for power factor correction. However, time and phase delays inherent in digital controllers might lead to unsatisfactory harmonic-damping performance although digital controllers are preferable to analog controllers. This paper deals with the design and implementation of a digital controller for a shunt active filter based on voltage detection. Experimental results obtained from a laboratory system developed in this paper verify the viability and effectiveness of the fully-digital-controlled active filter  相似文献   

16.
吴畏 《电子测试》2008,(2):73-76
传统无功补偿控制器普遍采用ADC MCU模式来测量电网电压、电流,计算有功、无功、功率因素等参数,具有硬件设计复杂、软件编程量大、抗干扰能力差等缺点.本文提出了基于TDK 71M6513的智能化低压无功补偿控制器,该控制器集成电网电压、电流参数采集,无功、有功、功率因素等参数计量,数据管理与输出控制于一体.本文给出了控制器的结构组成与工作原理、各单元模块电路以及系统软件流程设计,并对控制器实际工作性能进行了测试与结果分析.  相似文献   

17.
We investigate an instantaneous common terminal voltage-controlled harmonics compensator constructed by a shunt active filter with an appropriate series inductance including the line impedance. This compensator can reduce or compensate both the ac line voltage distortion derived from the downstream utility source voltage harmonics and the upstream current harmonics by nonlinear loads at the same time. The control system can be easily constructed without directly detecting the common terminal voltage to be compensated. Therefore, the main circuit configuration and the control system are simple. The harmonics compensation level and the compensation current can be easily adjusted by changing the feedback gain for the sensing inductance voltage drop. In this paper, we describe the basic principle of the control method, the modified control method, the circuit construction by the pulsewidth-modulation-controlled shunt active filter and the control system of the compensator. Then, we show some operating waveforms for the cases of the downstream voltage distortion and the upstream harmonics current from the nonlinear loads by simulation analysis and experiments to verify the feasibility.  相似文献   

18.
A photovoltaic (PV) power conditioning system (PCS) with line connection is proposed. Using the power slope versus voltage of the PV array, the maximum power point tracking (MPPT) controller that produces a smooth transition to the maximum power point is proposed. The dc current of the PV array is estimated without using a dc current sensor. A current controller is suggested to provide power to the line with an almost-unity power factor that is derived using the feedback linearization concept. The disturbance of the line voltage is detected using a fast sensing technique. All control functions are implemented in software with a single-chip microcontroller. Experimental results obtained on a 2-kW prototype show high performance such as an almost-unity power factor, a power efficiency of 94%, and a total harmonic distortion (THD) of 3.6%.  相似文献   

19.
A single-phase boost rectifier system with conventional low-bandwidth voltage loop exhibits poor dynamic response. A simple method is presented to improve the dynamic response of the rectifier without affecting its steady-state performance. A fast voltage controller is used to improve the dynamic response of the rectifier. The increased low-frequency ripple at the output of the voltage controller is filtered out using a new filter. Design methodology for the voltage loop is presented. The filter is simple enough for analog and digital implementations. Low input current distortion, fast voltage-loop response, and improved dynamic response against line and load disturbances are demonstrated experimentally on a 300-W digitally controlled boost rectifier operating at a switching frequency of 100 kHz.   相似文献   

20.
A capacitor-clamped voltage-source inverter for active power filter operation under balanced and unbalanced conditions is proposed to suppress current harmonics and compensate the reactive power generated from the nonlinear loads. The adopted voltage-source inverter is based on a three-level capacitor-clamped topology to reduce the voltage stress of power semiconductors. Two control loops are used in the control scheme to achieve harmonic and reactive currents compensation and to regulate the inverter dc side voltage. In the adopted inverter, the neutral point voltage is compensated by a voltage compensator to obtain the balanced capacitor voltages on the dc side. In order to control the flying capacitor voltages, two redundant states in each inverter leg can be selected to compensate the flying capacitor to obtain a better voltage waveform with low harmonic contents on the ac terminals. The balanced and sinusoidal line currents are drawn from the ac source under the balanced and unbalanced conditions. The feasibility of the proposed scheme is confirmed through experimental results  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号