首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Guarded measurements of the electrical conductivity of high-purity, polycrystalline Y2O3 in thermodynamic equilibrium with the gas phase were made under controlled temperature and oxygen partial pressure conditions. Data are presented as isobars from 1200° to 1600°C, and as isotherms from oxygen partial pressures of 10−1 to 10−17 atm. The ionic contribution to the total conductivity, determined by the blocking electrode polarization technique, was less than 1% over the entire range of temperatures and oxygen partial pressures studied. Yttria is shown to be an amphoteric semiconductor with the region of predominant hole conduction shifting to higher pressures at higher temperatures. In the region of p -type conduction, the conductivity is represented by the expression σ= 1.3 × 103 p O23/16 exp (-1.94/kT). The observed pressure dependence is attributed to the predominance of fully ionized yttrium vacancies. Yttria is shown to be a mixed conductor below 900°C.  相似文献   

3.
The eutectic composition between Y4Al2O9 and Y2O3 was determined using electron probe microanalysis (EPMA) on directionally solidified specimens with hypo- and hypereutectic compositions. The microstructures of the specimens as a function of composition differ considerably with small deviation from the eutectic composition (70.5 mol% Y2O3 and 29.5 mol% Al2O3). Based on the current results and other published data, the pseudobinary system between Al2O3 and Y2O3 is revised.  相似文献   

4.
5.
6.
Phase relations in the system Sc2O3-WO3 were characterized. Two stable binary compounds were, found. The 1:3 compound, SC2(WO4)3, melts congruently at 1640°±10°C and forms a simple eutectic with WO3 at ∼90 mol% WO3 and 1309°+10°C. The 3 : 1 compound, Sc6WO12, forms a simple eutectic with the 1:3 compound at -69 mol% WO2, and 1580°+10°C. The melting temperature of SC6WO12 was >1600°C.  相似文献   

7.
A tracer sectioning technique was used to measure cation self-diffusion coefficients in fully dense polycrystalline YaO3 and Er2Os under oxidizing conditions. The results are described by the relations for Y2O3 (1400° to 1670°C), and for Er2O3 (1400° to 1700°C). The greater activation energy for erbium diffusion in erbia may be partly attributable to a mass effect.  相似文献   

8.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

9.
Addition of Y2O3 as a sintering additive to porous β-SiAlON (Si6− z Al z O z N8− z , z = 0.5) ceramics has been investigated for improved mechanical properties. Porous SiAlON ceramics with 0.05–0.15 wt% (500–1500 wppm) Y2O3 were fabricated by pressureless sintering at temperatures of 1700°, 1800°, and 1850°C. The densification, microstructure, and mechanical properties were compared with those of Y2O3-free ceramics of the same chemical composition. Although this level of Y2O3 addition did not change the phase formation and grain size, the grain bonding appeared to be promoted, and the densification to be enhanced. There was a significant increase in the flexural strength of the SiAlON ceramics relative to the Y2O3-free counterpart. After exposure in 1 M hydrochloric acid solution at 70°C for 120 h, no remarkable weight loss and degradation of the mechanical properties (flexural and compression strength) was observed, which was attributed to the limited grain boundary phase, and with the minor Y2O3 addition the supposed formation of Y-α-SiAlON.  相似文献   

10.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

11.
Cubic solid solutions in the Y2O3-Bi2O3 system with ∼25% Y2O3 undergo a transformation to a rhombohedral phase when annealed at temperatures ≤ 700°C. This transformation is composition-invariant and is thermally activated, and the product phase can propagate across matrix grain boundaries, indicating that there is no special crystallo-graphic orientation relationship between the product and the parent phases. Based on these observations, it is proposed that cubic → rhombohedral phase transformation in the Y2O3-Bi2O3 system is a massive transformation. Samples of composition 25% Y2O3-75% Bi2O3 with and without aliovalent dopants were annealed at temperatures ≤ 700°C for up to 10000 h. ZrO2 as a dopant suppressed while CaO and SrO as dopants enhanced the kinetics of phase transformation. The rate of cubic/rhombohedra1 interface migration (growth rate or interface velocity) was also similarly affected by the additions of dopants; ZrO2 suppressed while CaO enhanced the growth rate. Diffusion studies further showed that ZrO2 suppressed while CaO enhanced cation interdiffusion coefficient. These observations are rationalized on the premise that cation interstitials are more mobile compared to cation vacancies in cubic bismuth oxide. The maximum growth rate measured was ∼10−10 m/s, which is orders of magnitude smaller than typical growth rates measured in metallic alloys. This difference is explained in terms of substantially lower diffusion coefficients in these oxide systems compared to metallic alloys.  相似文献   

12.
Self-diffusion coefficients of the oxygen ion in single-crystal Y2O3 were determined by the gas-solid isotope exchange technique. The results in the range 1100° to 1500°C are described by D=7.3 X 10-6 exp [-19l(kJ/mol)/RT] cm2/s. Comparison of the results with those for oxides with the fluorite-type structure indicates that the regularly arranged vacant anion sites in the C-type structure do not contribute eflectively to oxygen ion diffusion .  相似文献   

13.
14.
The phase equilibrium relations in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3 were examined. Each system has two stable binary compounds. A 3:s molar ratio garnet-type compound exists in both systems. The 1:1 distorted perovskite structure is stable in the system Gd2O3-Fe2O3 but only metastable in the system Y2O3-AI2O3. This interesting example of metastable formation and persistence of a compound with ions of high Z/r values explains the discrepancies in the literature on the structure of the composition YA1O3. A new 2:1 molar ratio cubic phase has been found in the system Y2O3-A12O3. Since silicon can be completely substituted for aluminum in this compound, the aluminum ions are presumably in fourfold coordination.  相似文献   

15.
16.
17.
We report here the fabrication of transparent Sc2O3 ceramics via vacuum sintering. The starting Sc2O3 powders are pyrolyzed from a basic sulfate precursor (Sc(OH)2.6(SO4)0.2·H2O) precipitated from scandium sulfate solution with hexamethylenetetramine as the precipitant. Thermal decomposition behavior of the precursor is studied via differential thermal analysis/thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and elemental analysis. Sinterability of the Sc2O3 powders is studied via dilatometry. Microstructure evolution of the ceramic during sintering is investigated via field emission scanning electron microscopy. The best calcination temperature for the precursor is 1100°C, at which the resultant Sc2O3 powder is ultrafine (∼85 nm), well dispersed, and almost free from residual sulfur contamination. With this reactive powder, transparent Sc2O3 ceramics having an average grain size of ∼9 μm and showing a visible wavelength transmittance of ∼60–62% (∼76% of that of Sc2O3 single crystal) have been fabricated via vacuum sintering at a relatively low temperature of 1700°C for 4 h.  相似文献   

18.
19.
The phase relations for the Sc2O3-Ta2O5 system in the composition range of 50-100 mol% Sc2O3 have been studied by using solid-state reactions at 1350°, 1500°, or 1700°C and by using thermal analyses up to the melting temperatures. The Sc5.5Ta1.5O12 phase, defect-fluorite-type cubic phase (F-phase, space group Fm 3 m ), ScTaO4, and Sc2O3 were found in the system. The Sc5.5Ta1.5O12 phase formed in 78 mol% Sc2O3 at <1700°C and seemed to melt incongruently. The F-phase formed in ∼75 mol% Sc2O3 and decomposed to Sc5.5Ta1.5O12 and ScTaO4 at <1700°C. The F-phase melted congruently at 2344°± 2°C in 80 mol% Sc2O3. The eutectic point seemed to exist at ∼2300°C in 90 mol% Sc2O3. A phase diagram that includes the four above-described phases has been proposed, instead of the previous diagram in which those phases were not identified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号