首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PHILIPS(飞利浦)170B4液晶显示器开关电源以7101(TEAl533)为核心构成,其内部框图见图1。有关应用电路如图2所示。1.TEAl533介绍TEAl533属于飞利浦公司研制的"第二代绿色芯片"系列开关电源控制电路。所谓"绿色芯片"就是使用此IC构成的开关电源电路在正常工作及待机状态时本身的功耗很低,而且电路的可靠性很高。在TEAl533中,主要使用了三项技术来实现"绿色芯片"功能:  相似文献   

2.
(2)稳压控制电路稳压控制电路由取样电路R27、R28、R29,误差放大电路IC4,光电耦合器IC3和IC2的②脚内部电路组成。当因某种原因使24V电压升高时,经R27与R28、R29分压后的取样电压随之升高,IC4的R端电压升高、K端电压下降,IC3导通加强,将IC2的②脚电位拉低,其⑤脚输出脉冲占空比变小。开关管Q2提前截止,使开关变压器T2输出电压变  相似文献   

3.
MOSFET(开关管)及其多路保护电路的引脚功能和对地参考电压、对地电阻见表1所示。③开关电源启动后,开关变压器TE004自馈绕组感应的脉冲电压经DE521整流、CE524滤波后,获得直流电压,取代启动电路为NE521的③脚提供启动后的工作电压。(3)稳压控制电路稳压控制电路以取样放大电路NE503(SE005N)、光电耦合器ZE504和厚膜电路NE521的④脚内部电路为核心构成,取样点在+5V-S输出端。  相似文献   

4.
(2)软启动控制该电路由N503的⑦脚内部电路和外接的软启动电容C521共同构成。防止开机瞬间稳压控制电路未及时工作,导致N503的⑤脚输出的开关管激励电压占空比过大,使开关管V503被过激励损坏。开机瞬间,由于C521两端电压不能突变,当它两端电压从小逐渐增大时,N503的⑤脚输出的激励脉冲占空比从小逐渐增大至正常,从而实现软启动控制。(3)稳压控制稳压控制电路由取样误差放大电路N506(SEl35N)、光电耦合器N504和N503的①脚内部电路组成。当负载变轻或市电电压升高引起输出电压升高  相似文献   

5.
(2)显示屏电源电路:主要是测量开关管Q1各极间是否击穿。若击穿,查尖峰吸收回路D8、R4、C9,该电路不工作会使反峰电压击穿Q1,电流增大烧坏熔丝管;再查Q1的G极控制电路:Q01击穿会导致Q1损坏或IC01内部电路故障也会导致Q1击穿或者导通时间过久而烧坏。IC01内部高压电路损坏而烧熔丝管,一般表现为该集成块严重烧黑。(3)PFC(功率因素校正)电路:关键点是测量开关管Q2各极间是否有击穿。若击穿,重点查G极控制电  相似文献   

6.
徒弟:何谓开关电源稳压控制电路? 师傅:开关电源稳压控制电路,一般指的是取样比较电路和脉冲调制电路的统称。其作用是通过控制开关管的导通和截止时间即开关脉冲的占空比来调整输出电压大小,使之达到稳压目的。根据取样电压取法的不同,取样电路可分为直接取样方式和间接取样方式两种。取样电压直接取自开关电源电路输出电压的称作为直接取样方式,而取样电压是通过开关变压器取样绕组上形成的脉冲电压,经整流滤波得到直流电压的叫做间接取样方式。  相似文献   

7.
2.稳压电路STR-S6708的⑦脚是稳压控制输入端,流入⑦脚的电流越大,振荡电路输出的脉冲宽度越窄,开关管导通的时间越短,开关电源输出电压下降;反之,注入STR-S6708⑦脚的电流越小,脉冲宽度越宽,开关管导通的时间越长,开关电源输出电压上升。  相似文献   

8.
2.稳压、待机与保护电路该机芯的稳压、待机及保护控制电路在开关电源的次级,如图5所示。(l)稳压控制电路稳压控制电路主要由Q883、D862组成,Q883内含取样、基准、误差放大电路。如果主输出电压高于115V,则经Q883取样及误差放大后,Q883的输出使光电管D862的①、②脚内接发光二极管的电流增大,于是D862的④、③脚内接光敏三极管的电流也增大,即从STR—Z2152的⑤脚流出来的电流增大,所以输出主电压将降回到+115V标准值。  相似文献   

9.
(4)启动电路、开关电源控制电路为了使开关管工作在饱和、截止的开关状态,必须有一个激励脉冲作用到开关管的基极(对于场效应管则为栅极),PDP彩电一般采用他激式电源,这个激励脉冲一般是由开关电源控制电路内部的振荡器产生。而振荡器的工作电压则由启动电路来提供。在开  相似文献   

10.
3.稳压控制电路:该机采用从+B(+125V)直接取样、误差比较放大电路VQ805(SE125N)、光电耦合器N804(TCP621)冷、热“地”隔离控制,调节开关管导通时间的PRC(脉冲占空比控制)工作方式。稳压控制原理是:当电源输出电压+B(125V)↑时→VQ805(SN125N)①脚(输入端)电压↑→经比较误差放大后VQ805②脚(输出端)电压↓→N804“光  相似文献   

11.
步步高系列中部分激光播放机,采用以稳压调整控制的开关电源单芯片JKA1MO0280为核心构成的开关电源组件。该电源组件由集成了一只高压MOSFET功率开关管与一个电电流模式控制器的新型集成电路KA1MO0280、误差取样电路KA431,光耦台器PC817等器件构成。  相似文献   

12.
4.稳压控制电路N831的②脚为取样反馈端,与光电耦合器N832的④脚相连接,N832的②脚接N833(TL431L)误差取样集成电路,以稳定T831"二次"侧的各路输出电压。当开关电源因PFC(功率因素校正)电路供电过高或负载电流减小等原因造成5 V—Q电压升高时,经过取样电路取样加到N833的①脚电压升高,经内部比较放大后,②脚电压降低,光电耦合器N832的①、②脚发  相似文献   

13.
(1)STR-X6769简介NE003(STR-X6769)是日本三肯公司推出的开关电源厚膜电路,内含MOSFET开关管、振荡电路、过电流、过电压保护电路等,只需外加少量元器件即可构成一个完整的开关电源。其引脚功能和对地参考电压、对地电阻见表3所示。(2)启动工作过程CE019、CE031正端的380V左右电压经开关变压器TE005、TE006"一次"绕组加到电源厚膜电路NE003  相似文献   

14.
王海  朱恩玉  王春艳 《电气开关》2011,49(4):48-50,53
介绍了一种零电压零电流开关(ZVZCS) DC/DC PWM三电平变换器,它通过在超前开关管上并联电容来实现零电压开关(ZVS),在高频变压器初级回路串联阻断电容,滞后开关管串联二极管,实现滞后开关管的零电流开关(ZCS).用飞跨电容将超前开关管、滞后开关管开关过程连接起来,实现三电平直流变换.采用移相控制,移相控制由...  相似文献   

15.
(6)准谐振电路准谐振电路由IC6构成的开关为准谐振电源或最低点电源,通过检测开关变压器T2有无感应信号("二次"绕组的回扫电压)或者开关管Q5的D极电压的最低点来触发导通Q5。当IC6的①脚电压高于65mV时,其⑤脚输出低电平,Q5保持关断状态;当IC6①脚电压低于65mV时,经内部消隐延迟时间后,其⑤脚输出高电平,Q5导通,开始新的变换周期。这样,可使EMI电磁噪声干扰最小。设置消隐延迟电  相似文献   

16.
1.副开关电源TCLPWL42C电源板中5V副开关电源电路如图2所示。由厚膜电路IC6、开关变压器T3、取样误差放大电路IC8、光电耦合器IC5等元器件组成。(1)NCPl013简介IC6(NCPl013)是一块准谐振PWM(脉冲宽度调制)控制器,工作在临界(准谐振)模式。内置过载、过电压保护电路。稳压调整采用电流模式控制。能根据负载自动调整输出脉冲的占空比。可用TNY264、TNY266替换,其引脚功能和维修实测对地电压、对  相似文献   

17.
为提高变流器的能量转移能力,降低控制电路的复杂性,提出一种适用于升压变流器的新的有源软开关缓冲电路。该电路利用辅助开关来参与能量转移;且升压变流器和缓冲器的开关能以零电压切换(ZV S)关断和零电流切换(ZCS)导通的方式工作。虽然流过升压变流器和缓冲器开关的电流不同,但这些开关在导通的大部分时间里并联运行,因此缓冲器开关参与了从电源到输出的能量转移。两个开关采用相同的控制信号和非隔离的门极驱动电路,控制电路十分简单、可靠。该方法通过一个3.2 kW升压变流器原型的实验结果得到证实。  相似文献   

18.
(3)如图3所示是NCPl377内部电路框图。其引脚功能如表2所示。①启动电路当接通电源时,从PFC(功率因素校正)电路输出的高压HV从NCPl377的⑧脚引入,芯片内部电流源(典型值4 mA)向NCPl377的⑥脚外接电容器C34充电,当电压Vcc达到12.5 V时,电流源关断。这一过程还会激活l ms软启动功能,使启动变得较缓慢。NCPl377启动后,内部电路开始工作,并从⑤脚输出开关脉冲,加到大功率MOS开关管Q5的G极,使Q5  相似文献   

19.
飞利浦105E11彩色显示器电源是以PWM控制芯片UC3842为核心构成的变压器耦合、并联型、他激式开关稳压电源。该电源稳压环路采用直接取样、光电  相似文献   

20.
针对双升压功率因数校正电路(dual boost power factor correction,DBPFC)输入电压采样和电感电流采样困难,控制电路复杂的问题,提出一种改进的DBPFC拓扑。该拓扑在MOS开关管的源极正串一个肖特基二极管以阻塞MOS开关管的体二极管,既可以采用电阻采样法来进行电感电流平均值取样,优化了控制电路设计。详细分析电路在一个开关周期内的工作模态和MOS开关管寄生电容对电路工作模态的影响,给出电路的重要仿真波形。对电路的功率损耗和效率进行了理论分析和对比。设计了基于该拓扑的实验样机,样机输出波形表明该电路抗扰动能力强,能够快速准确地实现功率因数校正。样机效率曲线验证了理论分析的正确性,表明电路在宽电压输入宽功率输出时均能取得良好的工作效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号