首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper investigates the problem of robust H control for uncertain discrete-time systems with circular pole constraints. The system under consideration is subject to norm-bounded time-invariant uncertainties in both the state and input matrices. The problem we address is to design state feedback controllers such that the closed poles are located within a prespecified circular region, and the H norm of the closed-loop transfer function is strictly less than a given positive scalar for all admissible uncertainties. By introducing the notion of quadratic d stabilizability with an H norm-bound, the problem is solved. Necessary and sufficient conditions for quadratic d stabilizability with an H norm-bound are derived. Our results can be regarded as extensions of existing results on robust H control and robust pole assignment of uncertain systems.  相似文献   

3.
The problem of robust H analysis and synthesis for linear discrete-time systems with norm-bounded time-varying uncertainty is studied in this paper. It will be shown that this problem is equivalent to the problem of H analysis and synthesis of an auxiliary system. The necessary and sufficient conditions for the equivalency are proved. Thus the original problem can be solved by existing H control methods.  相似文献   

4.
In this paper, we study the nonlinear H control of systems with periodic orbits. We develop the notion of an induced L2 gain (so-called nonlinear H norm) for systems where the no-disturbance behavior of the system is a periodic orbit and provide conditions under which the induced L2 gain of the system (around the orbit) can be made less than a specified value by state feedback. This work is a natural extension of results on nonlinear H control of nonlinear systems in a neighborhood of a stable equilibrium point to the periodic orbit case. Synthesis of a nonlinear H state feedback controller is facilitated by the use of transverse coordinates and, in particular, the transverse linearization of the system.  相似文献   

5.
This paper investigates the problem of H filtering for a class of uncertain continuous-time nonlinear systems with real time-varying parameter uncertainty and unknown initial state. We develop an infinite horizon H filtering methodology which provides both robust stability and a guaranteed H performance for the filtering error irrespective of the parameter uncertainty.  相似文献   

6.
Shengyuan  Tongwen   《Automatica》2004,40(12):2091-2098
This paper deals with the problem of H output feedback control for uncertain stochastic systems with time-varying delays. The parameter uncertainties are assumed to be time-varying norm-bounded. The aim is the design of a full-order dynamic output feedback controller ensuring robust exponential mean-square stability and a prescribed H performance level for the resulting closed-loop system, irrespective of the uncertainties. A sufficient condition for the existence of such an output feedback controller is obtained and the expression of desired controllers is given.  相似文献   

7.
This paper discusses the problem of robust H control for linear discrete time two-dimensional (2-D) singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter uncertainties. The purpose is the design of static output feedback controllers such that the resulting closed-loop system is acceptable, jump modes free, stable and satisfies a prescribed H performance level for all admissible uncertainties. A version of bounded realness of 2-D SRM is established in terms of linear matrix inequalities. Based on this, a sufficient condition for the solvability of the robust H control problem is solved, and a desired output feedback controller can be constructed by solving a set of matrix inequalities. A numerical example is provided to demonstrate the applicability of the proposed approach.  相似文献   

8.
In this paper, we clarify a new relationship between invariant zeros of a generalized plant and the order reduction of H controllers by using linear matrix inequalities in both continuous-time and discrete-time cases. In contrast with our recent paper, where a relationship between an unstable transmission-zero structure and the H controller order reduction is initiated in a fundamental manner, results obtained in this paper are more flexible in two senses: assumptions that are made for the generalized plant are relaxed, and stable as well as unstable invariant zeros are characterized to obtain a reduced-order H controller.  相似文献   

9.
In this paper, we examine the pole location of the feedback system composed of the nominal plant and the H central controller designed by the robust stability-degree assignment. Namely, the exact pole location at γ=∞ and the behavior near the infimum of γ are clarified where γ is the upper bound of the H norm constraint. The original design goal is to stabilize the plant against additive perturbations with the regional pole placement condition Re s<−α, and the design problem is reduced to the one-block H control problem.  相似文献   

10.
This paper focus on a stabilization problem for a class of nonlinear systems with periodic nonlinearities, called pendulum-like systems. A notion of Lagrange stabilizability is introduced, which extends the concept of Lagrange stability to the case of controller synthesis. Based on this concept, we address the problem of designing a linear dynamic output controller which stabilizes (in the Lagrange sense) a pendulum-like system within the framework of the H control theory. Lagrange stabilizability conditions for uncertainty-free systems and systems with norm-bounded uncertainty in the linear part are derived, respectively. When these conditions are satisfied, the desired stabilization output feedback controller can be constructed via feasible solutions of a certain set of linear matrix inequalities (LMIs).  相似文献   

11.
In this paper, we design an H controller for a class of lower-triangular time-delay systems. Backstepping is applied to construct an explicit feedback controller, and the closed-loop system maintains internal stability and an L2-gain from the disturbance input to the output. The design is delay-dependent. Simulations on an example system demonstrate the good performance of the proposed design.  相似文献   

12.
A robust (or H) approach to filtering for nonlinear systems is considered. A bound on the estimate error as a function of the disturbance energy is obtained. The corresponding dynamic programming equation is a first-order PDE. This has computational ramifications. The case where the measurements are discrete time is considered also. A numerical method is discussed.  相似文献   

13.
In this paper we collect some useful properties of the product of nonnegative operators in a Hilbert space. We then apply them to the standard H-control problem for infinite-dimensional time-varying systems and give necessary and sufficient conditions for the existence of a suboptimal controller by three conditions involving two independent Riccati equations with a coupling inequality.  相似文献   

14.
The problem of H filtering of stationary discrete-time linear systems with stochastic uncertainties in the state space matrices is addressed, where the uncertainties are modeled as white noise. The relevant cost function is the expected value, with respect to the uncertain parameters, of the standard H performance. A previously developed stochastic bounded real lemma is applied that results in a modified Riccati inequality. This inequality is expressed in a linear matrix inequality form whose solution provides the filter parameters. The method proposed is applied also to the case where, in addition to the stochastic uncertainty, other deterministic parameters of the system are not perfectly known and are assumed to lie in a given polytope. The problem of mixed H2/H filtering for the above system is also treated. The theory developed is demonstrated by a simple tracking example.  相似文献   

15.
This paper deals with the problem of H observer design for a class of uncertain linear systems with delayed state and parameter uncertainties. This problem aims at designing the linear state observers such that, for all admissible parameter uncertainties, the observation process remains robustly stable and the transfer function from exogenous disturbances to error state outputs meets the prespecified H norm upper bound constraint, independently of the time delay. The time delay is assumed to be unknown, and the parameter uncertainties are allowed to be norm-bounded and appear in all the matrices of the state-space model. An effective matrix inequality methodology is developed to solve the proposed problem. We derive the conditions for the existence of the desired robust H observers, and then characterize the analytical expression of these observers in terms of some free parameters. A numerical example demonstrates the validity and applicability of the present approach.  相似文献   

16.
This paper is concerned with robust stabilization of nonlinear systems with unstructured uncertainty via state feedback. First, a robust stability condition is given for a closed loop system which is composed of a nonlinear nominal system and an unstructured uncertainty. Second, based on the obtained robust stability condition, a sufficient condition for robust stabilization by state feedback is given in terms of the solvability of some H state feedback control.  相似文献   

17.
For a linear time invariant system, the infinity-norm of the transfer function can be used as a measure of the gain of the system. This notion of system gain is ideally suited to the frequency domain design techniques such as H optimal control. Another measure of the gain of a system is the H2 norm, which is often associated with the LQG optimal control problem. The only known connection between these two norms is that, for discrete time transfer functions, the H2 norm is bounded by the H norm. It is shown in this paper that, given precise or certain partial knowledge of the poles of the transfer function, it is possible to obtain an upper bound of the H norm as a function of the H2 norm, both in the continuous and discrete time cases. It is also shown that, in continuous time, the H2 norm can be bounded by a function of the H norm and the bandwidth of the system.  相似文献   

18.
This paper is concerned with a problem of stabilization and robust control design for interconnected uncertain systems. A new class of uncertain large-scale systems is considered in which interconnections between subsystems as well as uncertainties in each subsystem are described by integral quadratic constraints. The problem is to design a set of local (decentralized) controllers which stabilize the overall system and guarantee robust disturbance attenuation in the presence of the uncertainty in interconnections between subsystems as well as in each subsystem. The paper presents necessary and sufficient conditions for the existence of such a controller. The proposed design is based on recent absolute stabilization and minimax optimal control results and employs solutions of a set of game-type Riccati algebraic equations arising in H control.  相似文献   

19.
Recent papers have considered the problem of minimizing an entropy functional subject to an H performance constraint. Since the entropy is an upper bound for the H2 cost, there remains a gap between entropy minimization and H2 minimization. In this paper we consider a generalized cost functional involving both H2 and entropy aspects. This approach thus provides a means for optimizing H2 performance within H control design.  相似文献   

20.
On control for linear systems with interval time-varying delay   总被引:1,自引:1,他引:1  
Xiefu  Qing-Long   《Automatica》2005,41(12):2099-2106
This paper deals with the problem of delay-dependent robust H control for linear time-delay systems with norm-bounded, and possibly time-varying, uncertainty. The time-delay is assumed to be a time-varying continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, and no restriction on the derivative of the time-varying delay is needed, which allows the time-delay to be a fast time-varying function. Based on an integral inequality, which is introduced in this paper, and Lyapunov–Krasovskii functional approach, a delay-dependent bounded real lemma (BRL) is first established without using model transformation and bounding techniques on the related cross product terms. Then employing the obtained BRL, a delay-dependent condition for the existence of a state feedback controller, which ensures asymptotic stability and a prescribed H performance level of the closed-loop systems for all admissible uncertainties, is proposed in terms of a linear matrix inequality (LMI). A numerical example is also given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号