首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioredoxin reductase, lipoamide dehydrogenase, and glutathione reductase are members of the pyridine nucleotide-disulfide oxidoreductase family of dimeric flavoenzymes. The mechanisms and structures of lipoamide dehydrogenase and glutathione reductase are alike irrespective of the source (subunit M(r) approximately 55,000). Although the mechanism and structure of thioredoxin reductase from Escherichia coli are distinct (M(r) approximately 35,000), this enzyme must be placed in the same family because there are significant amino acid sequence similarities with the other two enzymes, the presence of a redox-active disulfide, and the substrate specificities. Thioredoxin reductase from higher eukaryotes on the other hand has a M(r) of approximately 55,000 [Luthman, M. & Holmgren, A. (1982) Biochemistry 21, 6628-6633; Gasdaska, P. Y., Gasdaska, J. R., Cochran, S. & Powis, G. (1995) FEBS Lett 373, 5-9; Gladyshev, V. N., Jeang, K. T. & Stadtman, T.C. (1996) Proc. Natl. Acad. Sci. USA 93, 6146-6151]. Thus, the evolution of this family is highly unusual. The mechanism of thioredoxin reductase from higher eukaryotes is not known. As reported here, thioredoxin reductase from human placenta reacts with only a single molecule of NADPH, which leads to a stable intermediate similar to that observed in titrations of lipoamide dehydrogenase or glutathione reductase. Titration of thioredoxin reductase from human placenta with dithionite takes place in two spectral phases: formation of a thiolate-flavin charge transfer complex followed by reduction of the flavin, just as with lipoamide dehydrogenase or glutathione reductase. The first phase requires more than one equivalent of dithionite. This suggests that the penultimate selenocysteine [Tamura, T. & Stadtman, T.C. (1996) Proc. Natl. Acad. Sci. USA 93, 1006-1011] is in redox communication with the active site disulfide/dithiol. Nitrosoureas of the carmustine type inhibit only the NADPH reduced form of human thioredoxin reductase. These compounds are widely used as cytostatic agents, so this enzyme should be studied as a target in cancer chemotherapy. In conclusion, three lines of evidence indicate that the mechanism of human thioredoxin reductase is like the mechanisms of lipoamide dehydrogenase and glutathione reductase and differs fundamentally from the mechanism of E. coli thioredoxin reductase.  相似文献   

2.
Exogenous ubiquinone-10 was efficiently reduced by rat liver microsomes in the presence of NADH and NADPH under anaerobic conditions. Ubiquinone-10 reduced under anaerobic conditions was rapidly re-oxidized by the re-aeration. The reduction and re-oxidation were not observed when the reactions were carried out with the boiled microsomes or without microsomes, suggesting that the reactions were enzymatically catalyzed by the electron transport system(s) from NAD(P)H to O2 through the ubiquinone. The Km and Vmax of the reductase activity for NADH were 0.4 mM and 1.7 nmol/min per mg of protein, and those for NADPH were 19 microM and 2.1 nmol/min per mg of protein, respectively. The NADH-dependent oxidoreduction system was different from the NADPH-dependent system because of the following observations; (1) rotenone inhibited only the NADH-dependent ubiquinone-10 reductase, (2) dicoumarol inhibited the NADPH-dependent ubiquinone-10 reduction more potently than the NADH-dependent reduction and (3) the activity oxidizing the reduced ubiquinone-10 in the presence of NADH was less than that in the presence of NADPH. Endogenous ubiquinone-9 was also reduced and re-oxidized in essentially the same manner as exogenous ubiquinone-10. Thus, ubiquinone-10 oxidoreductase in rat liver microsomes acts on endogenous ubiquinone-9.  相似文献   

3.
Recycling of ascorbic acid from its oxidized forms is required to maintain intracellular stores of the vitamin in most cells. Since the ubiquitous selenoenzyme thioredoxin reductase can recycle dehydroascorbic acid to ascorbate, we investigated the possibility that the enzyme can also reduce the one-electron-oxidized ascorbyl free radical to ascorbate. Purified rat liver thioredoxin reductase catalyzed the disappearance of NADPH in the presence of low micromolar concentrations of the ascorbyl free radical that were generated from ascorbate by ascorbate oxidase, and this effect was markedly stimulated by selenocystine. Dehydroascorbic acid is generated by dismutation of the ascorbyl free radical, and thioredoxin reductase can reduce dehydroascorbic acid to ascorbate. However, control studies showed that the amounts of dehydroascorbic acid generated under the assay conditions used were too low to account for the observed loss of NADPH. Electron paramagnetic resonance spectroscopy directly confirmed that the reductase decreased steady-state ascorbyl free radical concentrations, as expected if thioredoxin reductase reduces the ascorbyl free radical. Dialyzed cytosol from rat liver homogenates also catalyzed NADPH-dependent reduction of the ascorbyl free radical. Specificity for thioredoxin reductase was indicated by loss of activity in dialyzed cytosol prepared from livers of selenium-deficient rats, by inhibition with aurothioglucose at concentrations selective for thioredoxin reductase, and by stimulation with selenocystine. Microsomal fractions prepared from rat liver showed substantial NADH-dependent ascorbyl free radical reduction that was not sensitive to selenium depletion. These results suggest that thioredoxin reductase can function as a cytosolic ascorbyl free radical reductase that may complement cellular ascorbate recycling by membrane-bound NADH-dependent reductases.  相似文献   

4.
The effects of reduced glutathione (GSH) and glutathione disulfide (GSSG) on lipid peroxidation were investigated in rat liver microsomes containing deficient or adequate amounts of alpha-tocopherol (alpha-TH). Rates of formation of thiobarbituric acid reactive substances (TBARS) as well as rates of consumption of alpha-TH and O2 were decreased by GSH and were more pronounced in the NADPH-dependent assay system than in the ascorbate-dependent system. The GSH-dependent inhibition of lipid peroxidation was potentiated by GSSG in the NADPH-dependent assay system, but it had no effect in the nonenzymatic system. Diphenyliodonium chloride, an inhibitor of NADPH cytochrome P-450 reductase, completely prevented lipid peroxidation in the NADPH-dependent assay system whereas it had no effect on the ascorbate-dependent system. This is further evidenced by the fact that purified rat liver microsomal NADPH cytochrome P-450 reductase (EC 1.6.2.4) was inhibited approximately 24% and 52% by 5 mM GSH and 5 mM GSH + 2.5 mM GSSG, respectively. Glutathione disulfide alone had no effect on reductase activity. Similarly, other disulfides such as cystine, cystamine and lipoic acid were without effect on reductase activity. These results clearly delineate different mechanisms underlying the combined effects of GSH and GSSG on microsomal lipid peroxidation in rat liver. One mechanism involves recycling of microsomal alpha-TH by GSH during oxidative stress via a labile protein, ostensibly associated with "free radical reductase" activity. A second glutathione-dependent mechanism appears to be mediated through the inhibition of NADPH cytochrome P-450 reductase. The enhanced inhibition by GSH + GSSG of microsomal lipid peroxidation in the NADPH-dependent assay system suggests suppression of the initiation phase at the level of NADPH cytochrome P-450 reductase which is independent of microsomal alpha-TH.  相似文献   

5.
1. Lipoic acid is an example of an existing drug whose therapeutic effect has been related to its antioxidant activity. 2. Antioxidant activity is a relative concept: it depends on the kind of oxidative stress and the kind of oxidizable substrate (e.g., DNA, lipid, protein). 3. In vitro, the final antioxidant activity of lipoic acid is determined by its concentration and by its antioxidant properties. Four antioxidant properties of lipoic acid have been studied: its metal chelating capacity, its ability to scavenge reactive oxygen species (ROS), its ability to regenerate endogenous antioxidants and its ability to repair oxidative damage. 4. Dihydrolipoic acid (DHLA), formed by reduction of lipoic acid, has more antioxidant properties than does lipoic acid. Both DHLA and lipoic acid have metal-chelating capacity and scavenge ROS, whereas only DHLA is able to regenerate endogenous antioxidants and to repair oxidative damage. 5. As a metal chelator, lipoic acid was shown to provide antioxidant activity by chelating Fe2+ and Cu2+; DHLA can do so by chelating Cd2+. 6. As scavengers of ROS, lipoic acid and DHLA display antioxidant activity in most experiments, whereas, in particular cases, pro-oxidant activity has been observed. However, lipoic acid can act as an antioxidant against the pro-oxidant activity produced by DHLA. 7. DHLA has the capacity to regenerate the endogenous antioxidants vitamin E, vitamin C and glutathione. 8. DHLA can provide peptide methionine sulfoxide reductase with reducing equivalents. This enhances the repair of oxidatively damaged proteins such as alpha-1 antiprotease. 9. Through the lipoamide dehydrogenase-dependent reduction of lipoic acid, the cell can draw on its NADH pool for antioxidant activity additionally to its NADPH pool, which is usually consumed during oxidative stress. 10. Within drug-related antioxidant pharmacology, lipoic acid is a model compound that enhances understanding of the mode of action of antioxidants in drug therapy.  相似文献   

6.
The immunostimulatory dinitrohalobenzene compound 1-chloro-2, 4-dinitrobenzene (DNCB) irreversibly inhibits mammalian thioredoxin reductase (TrxR) in the presence of NADPH, inducing an NADPH oxidase activity in the modified enzyme (Arnér, E. S. J., Bj?rnstedt, M., and Holmgren, A. (1995) J. Biol. Chem. 270, 3479-3482). Here we have further analyzed the reactivity with the enzyme of DNCB and analogues with varying immunomodulatory properties. We have also identified the reactive residues in bovine thioredoxin reductase, recently discovered to be a selenoprotein. We found that 4-vinylpyridine competed with DNCB for inactivation of TrxR, with DNCB being about 10 times more efficient, and only alkylation with DNCB but not with 4-vinylpyridine induced an NADPH oxidase activity. A number of nonsensitizing DNCB analogues neither inactivated the enzyme nor induced any NADPH oxidase activity. The NADPH oxidase activity of TrxR induced by dinitrohalobenzenes generated superoxide, as detected by reaction with epinephrine (the adrenochrome method). Addition of superoxide dismutase quenched this reaction and also stimulated the NADPH oxidase activity. By peptide analysis using mass spectrometry and Edman degradation, both the cysteine and the selenocysteine in the conserved carboxyl-terminal sequence Gly-Cys-Sec-Gly (where Sec indicates selenocysteine) were determined to be dinitrophenyl-alkylated upon incubation of native TrxR with NADPH and DNCB. A model for the interaction between TrxR and dinitrohalobenzenes is proposed, involving a functional FAD in the alkylated TrxR generating an anion nitroradical in a dinitrophenyl group, which in turn reacts with oxygen to generate superoxide. Production of reactive oxygen species and inhibited reduction of thioredoxin by the modified thioredoxin reductase after reaction with dinitrohalobenzenes may play a major role in the inflammatory reactions provoked by these compounds.  相似文献   

7.
Aromatic ketone reductase activity of microsomes showed a unique cofactor requirement: Addition of NADP and glucose-6-phosphate was as effective as that of an artificial NADPH generating system, whereas NADPH alone served as a cofactor less efficiently. Microsomal aromatic ketone reductase, purified partially from guinea pig liver microsomes after solubilization with Triton X-100, reduced 5 beta-dihydrotestosterone, aromatic aldehydes, and ketones with NADPH as a cofactor. However, addition of hexose-6-phosphate dehydrogenase, purified from the same source, as an NADPH generator produced about 2 times higher activity than that of yeast glucose-6-phosphate dehydrogenase or NADPH alone.  相似文献   

8.
Mammalian selenocysteine-containing thioredoxin reductase (TR) isolated from HeLa cells and from human lung adenocarcinoma cells was separated into two major enzyme species by heparin-agarose affinity chromatography. The low-affinity enzyme forms that were not retained on heparin agarose showed strong crossreactivity in immunoblot assays with anti-rat liver TR polyclonal antibodies, whereas the high-affinity enzyme forms that were retained by the heparin column were not detected. Both low and high heparin-affinity enzyme forms contained FAD, were indistinguishable on SDS/PAGE analysis, and exhibited similar catalytic activities in the NADPH-dependent DTNB [5,5'-dithiobis(2-nitrobenzoate)] assay. The C-terminal amino acid sequences of 75Se-labeled tryptic peptides from lung adenocarcinoma low- and high heparin-affinity enzyme forms were identical to the predicted C-terminal sequence of human placental TR. These two determined peptide sequences were -Ser-Gly-Ala-Ser-Ile-Leu-Gln-Ala-Gly-Cys-Secys-(Gly). Occurrence of the Se-carboxymethyl derivative of radioactive selenocysteine in the position corresponding to TGA in the gene confirmed that UGA is translated as selenocysteine. The presence of cysteine followed by a reactive selenocysteine residue in this C-terminal region of the protein may explain some of the unusual properties of the mammalian TRs.  相似文献   

9.
10.
Murine macrophage nitric oxide synthase (NOS) was expressed in E. coli and purified in the presence (holoNOS) or absence (H4B-free NOS) of (6R)-tetrahydro-L-biopterin (H4B). Isolation of active enzyme required the coexpression of calmodulin. Recombinant holoNOS displayed similar spectral characteristics and activity as the enzyme isolated from murine macrophages. H4B-free NOS exhibited a Soret band at approximately 420 nm and, by analytical gel filtration, consisted of a mixture of monomers and dimers. H4B-free NOS catalyzed the oxidation of NG-hydroxy-L-arginine (NHA) with either hydrogen peroxide (H2O2) or NADPH and O2 as substrates. No product formation from arginine was observed under either condition. The amino acid products of NHA oxidation in both the H2O2 and NADPH/O2 reactions were determined to be citrulline and Ndelta-cyanoornithine (CN-orn). Nitrite and nitrate were also formed. Chemiluminescent analysis did not detect the formation of nitric oxide (*NO) in the NADPH/O2 reaction. The initial inorganic product of the NADPH/O2 reaction is proposed to be the nitroxyl anion (NO-) based on the formation of a ferrous nitrosyl complex using the heme domain of soluble guanylate cyclase as a trap, and the formation of a ferrous nitrosyl complex of H4B-free NOS during turnover of NHA and NADPH. NO- is unstable and, under the conditions of the reaction, is oxidized to nitrite and nitrate. At 25 degreesC, the H2O2-supported reaction had a specific activity of 120 +/- 14 nmol min-1 mg-1 and the NADPH-supported reaction had a specific activity of 31 +/- 6 nmol min-1 mg-1 with a KM,app for NHA of 129 +/- 9 microM. HoloNOS catalyzed the H2O2-supported reaction with a specific activity of 815 +/- 30 nmol min-1 mg-1 and the NADPH-dependent reaction to produce *NO and citrulline at 171 +/- 20 nmol min-1 mg-1 with a KM, app for NHA in the NADPH reaction of 36.9 +/- 0.3 microM.  相似文献   

11.
The fadH gene coding for an NADPH-dependent 2.4-dienoyl-CoA reductase from Escherichia coli has been cloned by the polymerase chain reaction. This gene is located at 67.65 min on the E. coli chromosome. The complete open reading frame contains 2019 bp coding for the processed protein of 671 amino acid residues, with a calculated molecular mass of 72.55 kDa, which lacks the N-terminal methionine. Construction and expression of the plasmid pNDH, which contained the fadH gene under the control of the T7 promoter, resulted in a 110-fold increase in the reductase activity above the level detected in E. coli cells containing the control vector. The kinetic parameters of the purified reductase were determined to be 50 microM and 2.3 microM for the Km values of NADPH and 2-trans, 4-trans-decadienoyl-CoA, respectively, and 16 s(-1) for the k(cat) value. Analysis of the kinetic data revealed that the reaction catalyzed by this enzyme proceeds via a ping-pong mechanism. The observed dissimilarity between the E. coli and mammalian 2,4-dienoyl-CoA reductase sequences suggests that they have evolved from distinct ancestral genes. Sequence analysis also suggests that the N-terminal part of the E. coli reductase contains the FAD-binding domain whereas the NADPH-binding domain is located in the C-terminal region of the protein.  相似文献   

12.
A K-12 strain of Escherichia coli that overproduces methylenetetrahydrofolate reductase (MetF) has been constructed, and the enzyme has been purified to apparent homogeneity. A plasmid specifying MetF with six histidine residues added to the C terminus has been used to purify histidine-tagged MetF to homogeneity in a single step by affinity chromatography on nickel-agarose, yielding a preparation with specific activity comparable to that of the unmodified enzyme. The native protein comprises four identical 33-kDa subunits, each of which contains a molecule of noncovalently bound flavin adenine dinucleotide (FAD). No additional cofactors or metals have been detected. The purified enzyme catalyzes the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, using NADH as the reductant. Kinetic parameters have been determined at 15 degreesC and pH 7.2 in a stopped-flow spectrophotometer; the Km for NADH is 13 microM, the Km for CH2-H4folate is 0.8 microM, and the turnover number under Vmax conditions estimated for the reaction is 1,800 mol of NADH oxidized min-1 (mol of enzyme-bound FAD)-1. NADPH also serves as a reductant, but exhibits a much higher Km. MetF also catalyzes the oxidation of methyltetrahydrofolate to methylenetetrahydrofolate in the presence of menadione, which serves as an electron acceptor. The properties of MetF from E. coli differ from those of the ferredoxin-dependent methylenetetrahydrofolate reductase isolated from the homoacetogen Clostridium formicoaceticum and more closely resemble those of the NADH-dependent enzyme from Peptostreptococcus productus and the NADPH-dependent enzymes from eukaryotes.  相似文献   

13.
The mannitol-1-phosphate dehydrogenase (M1PDH) (EC 1.1.1.17) from Streptococcus mutans strain FA-1 was purified to approximately a 425-fold increase in specific activity with a 29% recovery of total enzyme units, using a combination of (i) streptomycin sulfate and ammonium sulfate precipitation and (ii) diethyl-aminoethyl-cellulose (DE-52), agarose A 0.5M, and agarose-nicotinamide adenine dinucleotide (NAD) affinity column chromatography. Polyacrylamide gel electrophoresis of the purified enzyme preparation showed a single protein component that coincided with a band of M1PDH activity. The enzyme had a molecular weight of approximately 45,000 and was stable for long periods of time when stored at -80 degrees C in the presence of beta-mercaptoethanol. Its activity was not affected by mono- or divalent cations, and high concentrations of ethylenedia-minetetraacetic acid were not inhibitory. The M1PDH catalyzed both the NAD-dependent oxidation of mannitol-1-phosphate and the reduced NAD (NADH)-dependent reduction of fructose-6-phosphate. The forward reaction was highly specific for mannitol-1-phosphate and NAD, whereas the reverse reaction was highly specific for NADH and fructose-6-phosphate. The K(m) values for mannitol-1-phosphate and NAD were 0.15 and 0.066 mM, respectively, and the K(m) values for fructose-6-phosphate and NADH were 1.66 and 0.016 mM, respectively. The forward and reverse reactions catalyzed by the M1PDH from S. mutans appeared to be under cellular control. Both adenosine 5'-triphosphate and fructose-6-phosphate were negative effectors of the forward reaction, whereas adenosine 5'-diphosphate served as a negative effector of the reverse reaction catalyzed by the enzyme.  相似文献   

14.
RB90740 is the lead compound in a series of fused pyrazine mono-N-oxide bioreductive drugs. Theses agents have potential application in cancer therapy, since they are more toxic to hypoxic than to aerobic cells as a consequence of their bioactivation by cellular reductase enzymes within the hypoxic regions of a tumour. In this study, mouse liver microsomes have been used to characterise the enzymology of the reductive activation of RB90740. Under hypoxic conditions, the reduction of RB90740 to its stable 2-electron reduced product RB92815 was supported by both NADH and NADPH, the former supporting a rate approximately 80% of the latter. Combining the two cofactors had no additive effect. Neither carbon monoxide nor metyrapone inhibited reduction of RB90740, indicating that P450 isozymes were not involved in the reduction of this compound. 2' AMP, and inhibitor of P450 reductase, did not inhibit formation of RB92815, whereas DPIC, another inhibitor but with a different mode of action, inhibited both the NADH, and NADPH-dependent reduction of RB90740. Similarly, two selective inhibitors of NADH: cytochrome b5 reductase, pHMB and PTU, completely inhibited both NADH and NADPH-dependent reduction of RB90740. Our findings implicate P450 reductase, cytochrome b5 reductase, and cytochrome b5 in the activation of the compound. However, there is no clear relationship between the intracellular levels of P450 reductase and cytochrome b5 reductase and the hypoxic toxicity of RB90740, which implies that other factors, in addition to drug activation, play a major role in controlling the toxicity of this particular bioreductive drug.  相似文献   

15.
We describe the purification and characterisation of a thioredoxin reductase-like disulphide reductase from the ancient protozoan parasite, Giardia duodenalis. This dimeric flavoprotein contains 1 mol FAD per subunit and had an apparent subunit molecular mass of 35 kDa. The purified enzyme catalysed the NADPH-dependent (Km = 8 microM) reduction of 5,5'-dithio-bis(2-nitrobenzoic acid) to thionitrobenzoate and was unable to utilise NADH as an electron donor. The sulphydryl-active compounds, N-ethylmaleimide, sodium arsenite and Zn2+ ions, strongly inhibited the enzyme suggesting that a thiol component forms part of the active site. Purified enzyme was able to utilise a variety of substrates, including cystine and oxidised glutathione, which suggests that it is a broad-range disulphide reductase, probably accounting for the majority of thiol cycling activity in this organism. While the G. duodenalis enzyme does not require an intermediate electron transport protein, analogous to thioredoxin, for activity, we have identified a candidate carrier protein which enhances DTNB turnover six fold, therefore implying that Giardia contains a thioredoxin-like system. Physical, enzymatic and spectral properties of the G. duodenalis disulphide reductase are also consistent with it being a member of the thioredoxin reductase-class of disulphide reductases. Furthermore, the internal amino acid sequence of a tryptic peptide generated from the purified protein was highly homologous with thioredoxin reductases from other sources. This is the first report of a disulphide reductase to be purified from the anaerobic protozoa and explains the so called "glutathione-induced thiol-reductase activity' previously observed in G. duodenalis.  相似文献   

16.
Mitomycin C (MMC), an alkylating anti-tumor agent, was activated by non-enzymatic and enzymatic mechanisms leading to DNA binding and adduct formation. However, it was enzymatically, not non-enzymatically, activated MMC which induced inter-strand DNA cross-linking, a major determinant of cell death. The enzymatic activation of MMC was catalyzed by microsomal NADPH:cytochrome P450 reductase (P450 reductase) and cytosolic enzyme activities. Human P450 reductase, transiently expressed from its cDNA in the COSI cells, metabolically activated MMC to generate 9 specific MMC-DNA adducts and induced inter-strand DNA cross-linking. Co-chromatography of the MMC-DNA adducts generated by P450 reductase and sodium borohydride in separate experiments indicated that MMC was metabolized by P450 reductase to produce 2,7-diaminomitosenes that exhibited binding to deoxyguanosine. Several experiments indicated that cytosolic enzymes which catalyzed reductive activation of MMC and DNA cross-linking included NAD(P)H:quinone oxidoreductaseI (NQOI or DT diaphorase) when present in extremely high concentrations and a unique cytosolic activity. The unique cytosolic activity was present in several mammalian cells and mouse colon and liver but absent in mouse kidney. The unique activity had properties of a diaphorase but was distinct from NQOI because of a lack of correlation between NQOI (2,6-dichlorophenolindophenol reduction) activity and the amount of MMC-reductive activation leading to DNA cross-linking. This activity was also distinct from xanthine oxidoreductase and NADH-cytochrome b5 reductase, 2 other enzymes that catalyze metabolic activation of MMC, because the unique activity was not inhibited by allopurinol (an inhibitor of xanthine oxidoreductase) and its activity was the same with NADH and NADPH (cytochrome b5 reductase is specific to NADH).  相似文献   

17.
The flavoenzyme glutathione reductase catalyzes the NADPH-dependent reduction of glutathione disulfide, yielding two molecules of glutathione. The oxidation-reduction potentials, Eox/EH2 (two-electron reduced enzyme), for yeast, Escherichia coli, and human glutathione reductase have been determined between pH 6.0 and 9.8 relative to the nonphysiological substrate couple NAD+/NADH and were found to be -237, -243, and -227 mV (+/-5 mV) at pH 7.0 and 20 degreesC, respectively. The potential as a function of pH demonstrated slopes of -51, -45, and -42 mV/pH unit, respectively, at low pH and -37, -31, and -34 mV/pH unit, respectively, at high pH. The change in slope indicated pKa values of 7.4, 8.5, and 7.6, respectively. The slopes indicate that two protons are associated with the two-electron reduction of Eox at low pH and that only one proton is involved with the two-electron reduction of Eox at high pH, provided that the effects of nearby titratable residues are considered in the data analysis. The influence of four such groups, Cys50, Cys45, His456', and either Tyr107 or the flavin-(N3), has been included (residue numbering refers to the yeast sequence). The enzyme loses activity upon deprotonation of the acid-base catalyst at high pH. Since the pKa ascribed to the EH2-to-EH- ionization is lower than the pKa of the acid-base catalyst, both the EH2 and EH- forms of glutathione reductase must be catalytically active, in contrast to the closely related enzyme lipoamide dehydrogenase, for which only EH2 is active.  相似文献   

18.
Human thioredoxin reductase is a pyridine nucleotide-disulfide oxidoreductase closely related to glutathione reductase but differing from the latter in having a Cys-SeCys (selenocysteine) sequence as an additional redox center. Because selenoproteins cannot be expressed yet in heterologous systems, we optimized the purification of the protein from placenta with respect to final yield (1-2 mg from one placenta), specific activity (42 units/mg), and selenium content (0.94 +/- 0.03 mol/mol subunit). The steady state kinetics showed that the enzyme operates by a ping-pong mechanism; the value of kcat was 3330 +/- 882 min-1, and the Km values were 18 microM for NADPH and 25 microM for Escherichia coli thioredoxin. The activation energy of the reaction was found to be 53.2 kJ/mol, which allows comparisons of the steady state data with previous pre-steady state measurements. In its physiological, NADPH-reduced form, the enzyme is strongly inhibited by organic gold compounds that are widely used in the treatment of rheumatoid arthritis; for auranofin, the Ki was 4 nM when measured in the presence of 50 microM thioredoxin. At 1000-fold higher concentrations, that is at micromolar levels, the drugs also inhibited human glutathione reductase and the selenoenzyme glutathione peroxidase.  相似文献   

19.
An NADPH-dependent succinic semialdehyde reductase has been purified from bovine brain by several chromatographic procedures. The preparation appeared homogeneous on SDS/PAGE. The enzyme is a monomeric protein with a molecular mass of 28 kDa. A number of properties of the bovine brain enzyme, such as substrate specificity, specific activity, molecular mass, optimum pH, amino acid composition, and kinetic parameters, have been determined and compared with those reported for preparations from other sources. The results indicate that the enzyme isolated from bovine brain in the present study is different from those reported for preparations from other sources. The inhibition kinetic patterns obtained when the products of the reaction or substrate analogs are used as inhibitor of the reaction catalyzed by the enzyme are consistent with an ordered sequential mechanism involving the formation of an intermediate ternary complex and in which NADPH is the first substrate to bind the enzyme.  相似文献   

20.
We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarity with rat all-trans-retinol dehydrogenases RoDH-1, RoDH-2, and RoDH-3, and mouse cis-retinol/androgen dehydrogenase (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号