首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
低氮燃烧改造是燃煤电厂降低氮氧化物排放最主要的策略之一。空气分级燃烧技术因其技术成熟、成本低廉等优势在燃用烟煤的锅炉中得到广泛应用。然而,随着煤/风比的进一步增加,NO_x降幅减小,未燃尽碳含量显著变大。与燃用烟煤的锅炉相比,燃用低挥发分煤种锅炉的低氮改造工作更加困难和复杂。四角切圆贫煤锅炉的三次风会影响风煤混合、燃烧气氛和温度,这些都会对煤粉燃烧过程和NO_x生成产生显著影响,若仅采用空气分级技术,并不能满足NO_x排放标准。因此,在低氮燃烧改造方案设计过程中,需寻求最佳的三次风布置方案以实现低氮高效燃烧。将一台300 MW四角切圆贫煤燃烧锅炉作为研究对象,采取CFD数值模拟方法,考察了三次风布置方式对锅炉燃烧特性的影响。结果表明:当三次风布置在燃烧区下部时,下层一次风和三次风中的煤粉迅速着火燃烧,温度攀升,火焰中心上移; NO_x还原区变长,此时炉膛出口NO_x浓度最低,为405 mg/Nm~3;三次风的下移导致炉膛主燃区中上部氧量较少,煤粉不充分燃烧,燃尽率降低。当三次风布置在主燃区中部时,由于三次风风温较低,导致炉膛燃烧温度下降,一定程度上抑制了热力型NO_x的生成,炉膛出口NO_x排放量减少;三次风的喷入增加了主燃区过量空气系数,有利于煤粉的充分燃烧,燃尽率提高。当三次风布置在主燃区上部时,随着三次风位置的升高,三次风煤粉整体燃烧燃尽区域上移,折焰角附近温度依次升高;三次风位置的上移增加了NO_x还原区的长度,三次风喷口位置越高,炉膛出口NO_x浓度越低;三次风上移导致三次风煤粉在炉膛的停留时间变短,造成燃烧不充分,飞灰含碳量增加,燃尽率降低。此外,对改造后飞灰及大渣含碳量,炉膛出口烟温和NO_x浓度等参数进行现场测量,NO_x排放浓度模拟值和测量值分别为445和448 mg/Nm~3,飞灰含碳量分别为1. 92%和1. 48%,数值模拟结果与现场测量结果吻合较好。  相似文献   

2.
合理的燃尽风率对降低NO_x排放十分关键,也显著影响大容量锅炉炉膛内的燃烧和传热特性。针对1 000 MW超超临界二次再热塔式锅炉开展三维CFD数值模拟,研究燃尽风(OFA)率对于炉内NO_x生成及吸热量分配的影响规律。模型采用贴体六面体非结构网格,通过用户自定义函数(UDF)设置炉膛及各受热面的壁面温度;煤粉颗粒在炉内的运动及燃烧过程基于随机轨道法计算,采用Realizable k-ε模型模拟四角切圆炉内的湍流流动,采用离散坐标(discrete ordinates,DO)法计算炉内辐射传热;采用简化概率密度函数(probability density function,PDF)模型模拟湍流与化学反应的耦合特性。结果表明,燃尽风率对炉内的温度分布、炉膛的吸热比率以及污染物排放情况均存在显著影响。当燃尽风率在0~40%时,主燃区的平均温度随燃尽风含量的增大先升后降,而燃尽风区域的平均温度则随着燃尽风率升高显著上升。随着燃尽风率的升高,由于温度和氧含量变化等共同作用,原始NO_x排放量先降后升,燃尽风率在11%~25%时达到最低。随燃尽风率从0增至25%,锅炉炉膛吸热比率降低12%,过热器、再热器、省煤器等对流受热面的吸热比例相应增加。当燃尽风率大于25%时,炉膛吸热比例的降低趋势减缓。因此,建议在锅炉设计中应综合考虑OFA比例变化对炉膛吸热量以及污染物排放的影响。  相似文献   

3.
逆向射流燃烧技术是可同时适用于燃气和燃煤领域的高效低污染燃烧技术,逆喷结构和射流流速比决定了其流场特性。笔者综述了逆向射流燃烧技术在燃气和燃煤领域的发展历史、研究现状和发展趋势。在燃气领域,逆向射流主要起稳定火焰作用,具有良好的燃料-空气混合条件,形成一个近似均匀的热流场,避免燃烧过程中出现局部热点,但目前仅为一种为燃气轮机和飞机发动机提供的探索性技术,工程应用还需克服燃料和空气在一个狭小空间里的流场合理控制以及从简化装置到工程放大等问题。在燃煤领域,对于煤粉燃烧器,逆向射流可形成一个可控组分、大小、形状和位置的回流区,且将煤粉直接送进回流区,还可控制煤粉在回流区内的停留时间,该技术与传统火焰稳定方式相比,火焰稳定能力更强、停留时间更长、污染更低,更适用于低阶煤的高效燃烧,目前,逆向射流燃烧技术耦合其他稳燃、低氮技术为煤粉高效清洁利用发展提供了新方向,且已有实际工程应用,但对于其机理研究不够深入,限制了其进一步发展与推广。对于电站锅炉,部分一次风或燃尽风逆向偏转射入炉内,可缓解四角切圆燃烧方式下炉膛出口烟气的烟速和烟温偏差,目前主要是燃尽风反切的工业应用,但如何合理控制燃尽风反切角度、反切动量以及反切层数等关键问题还需进一步研究。  相似文献   

4.
采用燃烧器上摆和附加风上摆角度偏差设置的方法来降低锅炉烟温偏差和再热蒸汽温度偏差。对一台700 MW四角切圆燃烧锅炉不同燃烧器上摆角度条件下的炉内燃烧过程进行了数值模拟,模拟结果与试验值符合较好。燃烧器上摆角度增加,炉内气流的旋转动量矩和屏区入口的残余旋转动量矩减小,水平烟道内烟气速度和温度偏差降低。附加风上摆角度的偏差设置可降低屏区入口的残余旋转动量矩,进而减小烟气速度和温度偏差。燃烧试验表明,燃烧器上摆11°和附加风上摆角度的偏差设置10°可将再热蒸汽温度偏差由20℃左右降低至4℃以下,是一种有效降低烟气和再热蒸汽温度偏差的手段。  相似文献   

5.
为达到严格的超低排放标准,目前国内绝大部分电站锅炉均实施了NOx排放控制技术改造。针对一台燃用烟煤的420 t/h四角切圆煤粉锅炉,将原双通道燃烧器改造为水平浓淡燃烧器并加装3层燃尽风(SOFA),从而达到低氮燃烧的效果。应用数值模拟方法进行方案论证,研究了一次风浓淡比、SOFA风率和SOFA风射流角度等参数对锅炉燃烧状况及NOx排放规律的影响,并提出最佳改造方案。随着浓淡比的增加,炉膛出口温度逐渐增加,而NOx含量逐渐降低。浓淡比为4∶1时,飞灰含碳量最低。随着浓淡比增大,CO浓度升高,增强了主燃区域的还原性,抑制挥发分含氮中间产物氧化成NO;另一方面,浓淡比增大使浓煤粉气流挥发分析出速率加快,强化挥发分含氮中间产物HCN和NH3将已生成的NO还原为N2;同时,淡侧气流煤粉浓度低,含氮基团析出量变小,与氧反应生成NO的量减少。随着SOFA风率的增加,炉膛出口烟温、飞灰含碳量增加,20%SOFA风率时,NOx浓度较高,SOFA风率由30%增加到40%时,NOx浓度基本保持不变。随着SOFA风率的增加,主燃区形成的低O2高CO浓度的强还原性气氛抑制了HCN及NH3被氧化成NO,反而促进了其与已生成的NO发生反应生成N2。此外,高SOFA风风率下,主燃区高温区缩小,生成的热力型NOx也相应减少。随着SOFA风射流角度上扬,还原区加长,有利于降低NOx浓度,但燃尽区的火焰中心会上升,煤粉燃尽时间变短,炉膛出口温度和飞灰含碳量上升。随射流角度增加,O2浓度降低而CO浓度升高,这是由于射流角度增大延迟了煤粉燃尽过程,增加了化学不完全燃烧损失;这种低氧高CO的强还原性气氛大大抑制了NOx生成。根据数值模拟结果,确定试验锅炉的低氮燃烧改造方案为:选择浓淡比为4∶1的水平浓淡燃烧器作为改造燃烧器,SOFA风率定为30%,SOFA射流角度上扬15°。改造后锅炉燃烧稳定,NOx排放显著降低,为220 mg/Nm3左右(降幅达65%~70%),而飞灰含碳量保持在3%~4%,表明改造方案可达到良好的低氮燃烧效果。  相似文献   

6.
随着环保标准提高,电站锅炉NO_x排放量控制日益严格。低氮改造可以有效降低NO_x生成,而对于改造后低负荷下炉内燃烧特性研究有限。对某电厂低氮改造后的一台300 MW四角切圆煤粉锅炉进行了低负荷下多工况燃烧特性的数值模拟,研究了过量空气系数、燃尽风量和一次风喷口给煤量对炉内速度场、温度场、组分浓度场的影响。通过改进网格系统,提高模拟结果的准确性。数值模拟结果和试验测量值偏差较小,说明其数值模拟结果可信。结果表明:随着过量空气系数的增加,炉内燃烧温度升高,还原性物质减少,NO_x排放量增加,当过量空气系数从1.20增加到1.30时,NO_x排放从221.12 mg/m~3增加到196.26 mg/m~3;随着燃尽风量增加,主燃区温度降低,燃尽区温度升高,主燃区温度的降低抑制了热力型NO_x的生成,NO_x排放量降低,当燃尽风量从20%增加到30%时,NO_x从231.21 mg/m~3降低到180.95 mg/m~3;一次风喷口给煤量变化对炉膛内温度场、组分浓度场和NO_x生成影响较小。  相似文献   

7.
针对某公司150 t/h煤粉锅炉燃烧效率低、NOx排放浓度高、炉膛结焦等问题,提出了用富氧风作为炉顶燃尽风和贴壁风的分级燃烧新思路,采用计算机数值模拟技术和k-e- -g气相湍流燃烧模型及煤双挥发反应热解模型,对锅炉炉内速度场、温度场及燃烧过程中的NOx生成浓度进行数值模拟. 技术改造后锅炉的燃烧效率保持在96%以上,锅炉综合热效率在91.40%以上,NOx排放量为625~763 mg/m3,未发现炉膛水冷壁和高温过热器上有结渣现象.  相似文献   

8.
本文在对某电厂1号630MW燃煤锅炉运行工况摸底的基础上,考察了优化前在中高负荷下省煤器出口A/B两侧过热汽温、再热汽温、飞灰可燃物含量、截面处CO及O2含量的分布,计算了CO热损失及修正后的锅炉热效率,提出了对燃烧器内外二次风、燃尽风的优化调整方案。试验结果表明,优化后580MW、450MW两个负荷下,A/B侧主蒸汽温度与再热汽温良好,CO浓度分别从6166μL/L和2852μL/L下降至77μL/L和39μL/L;优化后的锅炉热效率分别提高了2.09%和1.32%,较好的实现了降本增效。  相似文献   

9.
针对某电厂350 MW低氮锅炉水冷壁高温腐蚀问题,进行调整配风与增加贴壁风的模拟研究。分别模拟燃尽风率38%、33%、27%时炉膛内还原性气体CO、H2S与NOx浓度的变化关系,并模拟增加贴壁风对水冷壁附近还原性气体浓度的影响。结果表明,燃尽风率由38%降至33%,可在NOx生成量无明显增加的前提下使炉膛内还原性气体CO与H2S浓度降低20%,减缓水冷壁的高温腐蚀;将燃尽风率由38%降至27%,虽可增加主燃区氧气浓度,降低CO与H2S生成量,减缓水冷壁高温腐蚀,但会造成NOx浓度大幅增加。炉膛内高温腐蚀区域主要位于紧凑燃尽风UAP喷口与中位燃尽风SOFA3喷口之间,可在紧凑燃尽风UAP喷口两侧增加贴壁风。模拟结果显示增加与主气流旋向相同的贴壁风可降低水冷壁附近CO、H2S浓度且对流场影响较小。由于水冷壁附近CO浓度较高,双侧贴壁风流量更大,对降低水冷壁附近CO效果更好,双侧贴壁风对高温腐蚀区域覆盖面积更大。而水冷壁附近H2<...  相似文献   

10.
燃煤耦合污泥发电技术研究主要聚焦在掺混比等条件的影响,而主燃区过量空气系数等因素的影响规律尚不清晰。鉴于此,采用涡耗散模型对600 MW四角切圆煤粉锅炉掺烧市政污泥进行数值模拟研究,分析了污泥掺混比例、主燃区过量空气系数以及二次风配风方式对燃煤锅炉内污泥掺混燃烧及NOx生成的影响。结果表明:随着污泥掺混比增加,炉膛整体温度下降,影响燃烧稳定性,同时炉膛出口NOx浓度有所降低。当污泥掺混比例增长至20%,炉膛出口温度约下降100 K,NOx浓度减少53.2%。而污泥掺混比例对于炉膛内速度场分布影响较小。随着主燃区过量空气系数由0.72增加至0.96,炉膛出口温度增幅较小,仅增加15 K左右,而NOx浓度则大幅增长,由174.39 mg/m3增长至352.09 mg/m3,约增长50.4%。在本文过量空气系数范围内,考虑温度和NOx浓度,推荐主燃区过量空气系数0.84。不同二次风配风对燃煤锅炉掺烧污泥影响差异较大。5种配风方式下,炉膛出口温度和NOx浓度有较大变化。鼓腰配风下炉膛出口温度最低,为1 289 K,而倒塔配风温度最高,为1 341 K。同时鼓腰配风下NOx浓度较高,为207.77 mg/m3,束腰配风NOx浓度较低,为156.42mg/m3。综合温度和NOx浓度,本文二次风配风推荐采用束腰配风方式。  相似文献   

11.
降低烟温偏差是塔式锅炉的特性之一,但实际运行过程中其烟温偏差仍存在,目前还缺乏其偏差形成机理的深入研究。以一台660 MW四角切园燃烧的塔式锅炉为对象,研究了额定工况下的屏式受热面区域烟气流场偏斜与温度偏差特性;设计了3种不同的烟道结构和屏式受热面布置工况,研究其烟温偏差机理。结果表明:模拟值和烟温偏差特性与试验值和实际运行偏差特性一致。屏式受热面区域存在明显的烟气流动偏斜和温度偏差,左侧区域的速度和温度明显高于右侧区域;随着高度增加,左右两侧的流动和烟温偏差先增后减,在标高68 m的三级过热器入口附近烟温偏差达到最大值。引起烟气流动和烟温偏差的原因有两方面:一是在受热面管屏分割约束的作用下,旋转上升进入屏区的烟气垂直于管屏方向的速度分量被迫发生转向,导致靠近左侧区域烟气主要向前墙流动,而右侧区域烟气主要向后墙流动。二是由于炉膛顶部烟气出口不对称布置在后墙,在引风机的抽吸作用下,左侧区域的烟气流动先向前墙倾斜,而后转向后墙,在整个屏式受热面区域分布较居中;而右墙区域的烟气先向后墙倾斜,后沿后墙区域被抽走;左右两侧不同的烟气流动偏差导致温度偏差。  相似文献   

12.
风扇磨出口氧量变化直接影响褐煤的燃烧效率及氮氧化物(NO_x )的生成。采用Fluent15. 0对某660 MW超临界机组风扇磨出口氧量分别为8%、10%、12%、14%、16%工况下燃料在塔式炉内的流动特性、燃烧特性以及NO_x 的生成规律进行数值模拟研究。结果表明,随着风扇磨出口氧量的增加,火焰中心和炉膛出口烟温降低,调整风扇磨出口氧量可有效控制火焰中心位置及炉膛出口烟温,避免抽烟口处烟温过高而导致抽烟口结焦;同时,炉膛出口NO_x 含量增加。综合对比风扇磨出口不同氧量工况下煤粉燃烧特性与NO_x 的生成规律,得出风扇磨出口最佳氧量为10%。  相似文献   

13.
玻璃熔窑在采用高温低氧燃烧(HTAC)技术的条件下使用烟气再循环联合燃尽风燃烧对降低NOx排放有极其显著的效果。基于数值计算方法建立了烟气再循环联合燃尽风燃烧数学模型,并通过实际运行数据与仿真结果对比验证了该模型的可靠性。研究表明:(1)随着烟气循环率增长,炉膛火焰温度下降,小炉出口NOx浓度下降;(2)加入燃尽风有利于提升烟气对玻璃液的热通量;(3)本研究条件下烟气再循环联合燃尽风降氮燃烧优化运行参数为:烟气循环率5%,燃尽风率20%;在优化参数下运行时,其对应的NOx质量流量为0.009 51 kg·s-1,热通量为41.54 kW·s-1,与基础工况(循环率0、燃尽风率0)相比,NOx排放浓度下降60.73%,烟气与玻璃液间热通量增加13%;而与循环率0、燃尽风率20%的工况相比,NOx浓度下降49.4%,烟气与玻璃液间热通量下降3.7%。为玻璃熔窑NOx减排提供了理论支持。  相似文献   

14.
为解决无烟煤锅炉燃烧中存在的着火性能差、燃尽率低、锅炉设备燃烧不稳、效率下降、受热面结渣严重等问题,对某220 t/h燃烧无烟煤锅炉进行燃烧系统灵活性改造优化研究。通过热态试验,研究煤粉细度、锅炉负荷、磨煤机启停、三次风、二次风、瓦斯等因素对煤粉着火的影响;通过冷态试验,计算冷态下一、二、三次风风速,试验包括飘带试验、炉膛速度场的测量、贴壁速度场的测量。220 t/h无烟煤锅炉灵活性改造方案为:假想切圆直径为700 mm,对应的实际切圆直径为4 000 mm;下一次风喷口的V型由垂直方向改为水平方向;将原上一次风百叶窗水平浓淡燃烧器喷口V型稳燃体去除,改为直板型;卫燃带面积由80.64 m~2调整为63.36 m~2;加装4台瓦斯流量表。通过优化研究,提出了修正后的冷态实际切圆大小的计算公式,确定修正系数K_(xs)=1.132,并做出实际切圆与一次风速、二次风速的关系曲线。改造后试验机组最大限度地减轻锅炉受热面结焦,掺烧劣质煤的运行特性明显改善,飞灰含碳量平均控制在3.29%,优化方案可在无烟煤燃烧锅炉灵活性改造中推广。  相似文献   

15.
在实际运行中,旋流对冲燃烧锅炉的大风箱分配到同层各燃烧器的流量不均匀,显著影响煤粉的燃尽特性。然而,对该炉型锅炉炉内单个燃烧器的燃尽特性研究相对较少。基于此,以一台600 MW前后墙旋流对冲锅炉为对象,开展炉内燃烧器燃尽特性及其优化的数值模拟,探究燃烧器不同配风方式、旋流强度及出力对煤粉燃尽特性影响。模拟结果表明,下层燃烧器对应的飞灰含碳量高于中、上层燃烧器;中间燃烧器对应的飞灰含碳量(平均值约0.1%)低于两侧燃烧器(平均值约3%),这与现场测量的结果基本一致。侧墙附近燃烧器煤粉的不完全燃烧是锅炉出口飞灰含碳量的主要来源。适当减少中间燃烧器的风量并增加侧墙附近燃烧器的风量对中间燃烧器煤粉的燃尽特性影响相对较小,但能有效改善靠近侧墙燃烧器煤粉的燃尽特性(飞灰含碳量从3.0%降至1.6%以内);适当增加侧墙附近燃烧器二次风旋流强度或提高中间燃烧器出力、降低侧墙附近燃烧器出力,也可有效降低侧墙燃烧器对应的飞灰含碳量(2%以内),改善锅炉煤粉燃尽特性。  相似文献   

16.
为研究煤粉与有机固废热解气的混燃特性,基于某330 MW机组四角切圆锅炉,搭建了煤粉掺烧热解气模型,考察了掺混比为10%,20%和30%的热解气对炉膛速度场、温度场及燃烧产物排放等的影响规律。结果表明,掺混比为30%以内的热解气与煤粉混燃对炉膛内整体速度场没有显著扰动,流场分布良好;掺烧工况与纯煤粉工况的温度变化趋势基本一致,且掺混比越大,炉膛最高温度和出口温度越低;掺混热解气替代部分煤粉,能有效降低炉膛出口污染物NOx的排放量。随着掺混比增加,炉膛出口处NOx含量分别是384.8,327.8,292.3,250.7 mg/Nm3;掺混热解气对烟气停留时间影响不大,能在一定程度上提高煤粉燃尽率。  相似文献   

17.
尤默  陈磊  尚勇  高爱国  苏胜  向军 《洁净煤技术》2023,(10):145-152
在新能源大规模消纳及国家双碳目标背景下,实现锅炉低负荷稳定燃烧对火力发电机组深度灵活调峰具有重要意义。以国内某660 MW超临界墙式切圆燃烧煤粉锅炉为研究对象,对锅炉进行了低负荷下多工况燃烧特性的数值模拟及试验验证,研究了不同燃烧组织方式对炉内燃烧气流速度、温度及氧浓度分布特性的影响。通过对燃烧器区域进行加密网格划分,提高模拟结果的准确性,数值模拟结果与试验结果偏差较小,说明其模拟结果可信。研究结果表明:30%低负荷下,墙式切圆锅炉通过开启底层燃烧器并进行合理配风,煤粉在炉内能形成良好的切圆流场并增加停留时间;同时,通过适当增加运行燃烧器的间距,能够实现炉内部热负荷分布均匀,为锅炉超低负荷下稳定燃烧提供了有利条件。结果表明,模拟提出的墙式切圆锅炉燃烧组织与运行策略合理,可保证锅炉30%低负荷下稳定燃烧及各项主蒸汽参数达到运行要求,结果为该类型超临界机组深度灵活调峰运行提供基础与依据。  相似文献   

18.
为了研究不同种类气体再燃和再燃喷口下倾角度对燃煤锅炉燃烧特性的影响,基于FLUENT软件,选取某超超临界660 MW锅炉为研究对象,搭建再燃气体耦合燃煤燃烧模型对锅炉进行改造,在主燃烧区上部增设再燃区,研究不同种类气体再燃和不同再燃喷口下倾角度对锅炉温度场,CO、CO2、O2组分场以及NOx排放量的影响。结果表明:再燃气体的加入会使锅炉主燃烧区炉膛温度降低,但会引起再燃区和燃尽区烟气温度升高,且随着再燃气体的加入,炉膛火焰中心上移,出口烟气温度上升;再燃导致炉膛出口CO体积分数升高,而O2和CO2体积分数降低,NOx排放量明显下降;与纯煤工况相比,秸秆气、甲烷和沼气掺烧时的NOx排放量分别下降了20.1%、26.2%和25.2%。再燃喷口适当向下倾斜可以改善炉内流场强度,增强锅炉燃烧效果,同时增加再燃燃料在再燃区的停留时间,有效降低炉膛出口NOx排放量。当向下倾角为15°时,减排效果最好,秸秆气、甲烷和沼气再燃时...  相似文献   

19.
为了消纳新能源上网,循环流化床(CFB)锅炉机组利用自有调峰能力强特点,参与深度调峰灵活性运行。但超低负荷运行时,受密相区流化安全约束,一次风总量无法持续下降,从而破坏了固有的一、二次风分级还原特性,导致更多的NOx生成。同时,炉膛出口温度远低于选择性非催化还原(SNCR)温度窗口,导致设置在分离器内的脱硝系统效率下降。烟气再循环技术是一种适合CFB锅炉低负荷运行的NOx控制技术,介绍了330 MW亚临界CFB锅炉机组烟气再循环改造前后的运行性能对比,结果表明,在超低负荷条件下,采用烟气再循环技术能在维持密相区流化安全的同时,显著降低一次风量,强化密相区还原氛围,同时降低密相区温度,延迟炉膛内燃烧,显著提高炉膛出口烟温,有效避免了分离器内SNCR脱硝效率的降低。并针对烟气再循环系统内的腐蚀提出了合理的运行控制策略。  相似文献   

20.
为研究某大型城市生活垃圾焚烧炉的配风对于垃圾燃烧过程的影响,利用Flic和Fluent软件,研究一二次风配比、前后拱二次风角度和配风风量等因素对于燃烧过程的影响。数值模拟结果表明,而二次风管数的增加将造成流速的降低,削弱了烟气的混合,不利于燃料后期的燃尽;合适的前、后拱二次风角度和风量配比可以减少前、后拱壁面受到高温腐蚀和烟气颗粒冲蚀,促使炉膛底部气体尽快进入烟道中进行二次燃烧。对该炉燃烧适应性的数值模拟研究表明,来料垃圾热值过低需要增加垃圾入炉量和炉排速度,否则垃圾无法在炉内稳定燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号