首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乔梓晗  王泽柔  郭红霞 《辽宁化工》2022,(12):1687-1690
寻找简便有效的方法对CO2进行捕集和封存,是未来实现“双碳”目标、保障能源安全和实现可持续发展的重要手段。钙基吸附剂因具有高CO2吸附容量、价格低、脱碳效率高、对设备污染少等优点,在高温吸附领域显示出广阔的应用前景,但在多次吸附、再生循环过程中容易烧结、循环稳定性差。针对稳定性良好的Zr掺杂改性钙基吸附剂,探究操作温度和操作气氛等操作条件对吸附性能的影响。利用热重分析仪(TGA)进行了5种操作条件下吸附性能评价,同时采用SEM、CO2-TPD、XRD等进行表征。结果表明:吸附温度在650℃,脱附温度为700℃,吸附氛围为30%CO2/70%N2时改性吸附剂性能最好,且经过20次吸脱附循环后没有明显变化。在其他操作条件一定的情况下,随着脱附温度的升高,吸附性能降低,烧结现象更显著;随着CO2浓度的增加,评价后样品的粒径逐渐增大。与CaO相比,Zr掺杂改性吸附剂的中强碱性位更强。  相似文献   

2.
随着人类社会工业化进程的加快,温室气体排放量随之增加,导致温室效应加剧。在所有温室气体中,CO2占比最多、贡献最大,被认为是引起全球变暖的主要因素。人为排放的CO2主要来自工业生产过程中化石燃料的燃烧,为实现碳中和目标,除了推广清洁能源、提高能源利用效率和增加植物碳汇等措施外,对工业排放的CO2进行捕集封存必不可少。目前限制CO2捕集和分离工艺应用的主要因素是成本过高,为解决该问题,开发第2代低能耗固体CO2吸附材料对推动工业源CO2减排具有重要意义。Li4SiO4凭借较高的吸附容量、较低的再生能耗和成本在高温CO2捕集领域具有良好的应用前景。为推进Li4SiO4材料在碳捕集、利用和封存(CCUS)工艺中的应用,综述了Li4SiO4基吸附材料的研究进展,介绍了不同合成方法及合成条件对Li4  相似文献   

3.
有效捕集CO2对于缓解亟待解决的温室效应、气候变暖、环境污染和能源危机问题具有重大意义。钙基吸附材料因为CO2吸附容量高及成本低廉而受到了广泛关注。本文介绍了钙基吸附剂的CO2吸附机理,着重阐述了显著提高吸附性能的两种改性方法,包括惰性掺杂和形貌调控。归纳了利用Zr、Ce、Mn、Mg、Al等塔曼温度较高或富含氧空穴的金属氧化物对氧化钙进行单掺杂和复合掺杂改性,针对合成方法、吸脱附条件、惰性组分掺杂量、钙基前体等不同参数对掺杂改性钙基CO2吸附剂性能的影响进行总结。同时指出,采用聚苯乙烯小球、碳凝胶、碳球、表面活性剂等制备得到的中空结构球形钙基吸附剂或实心结构球形钙基吸附剂,具有良好的CO2吸附容量和吸附稳定性。提出两种改性方法距离工业化应用还有较大的差距,亟需深入探讨吸附剂的结构与性能之间的关系,从而为吸附剂的设计提供理论指导。  相似文献   

4.
以国产聚丙烯腈(PAN)基碳纤维为原料,采用KOH为活化剂制备PAN基活性碳纤维。测定了不同ACF样品的CO2吸附量,并通过氮气吸附、碘吸附以及红外光谱对所得活性碳纤维的比表面积、孔结构及表面官能团进行表征。研究了活化温度、活化时间和表面改性对活性碳纤维CO2吸附量的影响。结果表明,活化温度是影响活性碳纤维CO2吸附量的主要因素。当活化温度为850℃时,所得活性碳纤维BET比表面积为1235m2/g,微孔比表面积为745 m2/g,在吸附温度为273 K、吸附相对压力P/P0为1时,CO2的吸附量达到87.29 mL/g。  相似文献   

5.
近年来生物质废料作为制备活性炭的前驱体受到广泛关注,简单回顾了生物质活性炭的制备方法、影响因素、活性炭的改性试剂以及吸附CO2的应用研究,最后对其未来的发展方向进行了展望。  相似文献   

6.
CO_2吸附强化CH_4/H_2O重整制氢是提供低成本高纯氢气和实现CO_2减排的方法之一。其中,催化剂和吸附剂是该工艺的重要组成部分,其活性与选择性制约了反应速率和产率,寿命长短关系到生产成本。综述了CO_2吸附强化CH_4/H_2O重整制氢催化剂和吸附剂的研究现状及存在的问题,机械混合的催化剂与吸附剂在反应过程中存在吸附产物包覆催化活性位点的问题,导致催化剂活性迅速下降。针对该问题,进一步探讨了不同结构双功能复合催化剂的结构特性、研究现状及其在循环-再生过程中存在的问题,核壳型双功能催化剂具有吸附组分与催化剂组分相对独立、催化组分分散分布和比表面积大等优点,在吸附强化制氢中有进一步研究的潜力。利用双功能催化剂的结构特点,实现反复循环再生过程中催化与脱碳反应的匹配,是推动CO_2吸附强化CH_4/H_2O重整制氢技术工业化发展的关键。  相似文献   

7.
简介了吸附强化甲烷水蒸汽重整制氢的研究背景,重点介绍了新型锂基CO2吸附剂(包括Li2ZrO3、Li4SiO4、Na2ZrO3)在吸附强化甲烷水蒸汽重整制氢中的应用研究进展,对新型吸附剂在吸附强化制氢中的应用研究进行了展望。  相似文献   

8.
由栗子壳制备栗子壳碳和栗子壳活性炭进行CO2吸附,对实验数据进行动力学模型与热力学模型拟合,计算得到动力学及热力学参数,探讨栗子壳基碳材料对CO2的吸附机理。结果表明,栗子壳碳和栗子壳活性炭对CO2的吸附符合准一阶动力学模型,298 K下吸附自由能(ΔG)、吸附热(ΔH)和吸附熵(ΔS)均小于0,表明该吸附过程是一个放热的混乱度降低的自发过程,吸附以物理吸附为主,吸附过程主要发生在外表面单分子层。  相似文献   

9.
刘思乐  郭瓦力  田旭  冯健  单译 《化工进展》2012,31(2):388-391
采用机械混合法制备了Li2O-CaO吸附剂,在固定床管式反应器中研究了Li2O-CaO吸附剂的吸附性能,考察了吸附温度、空速及吸附剂粒径对静吸附容量的影响,确定了适宜的工艺条件,采用XRD和SEM对改进的钙基吸附剂进行了表征。结果表明,Li2O-CaO吸附剂对CO2有较好的吸附能力,在吸附温度600℃、空速8min-1、吸附剂粒径60~80目(0.18~0.28 mm)的条件下,静吸附容量达到了17.3891 mol/kg。  相似文献   

10.
采用沉淀-水热法制备了CdS/C-TiO2系列复合光催化剂,通过XRD、UV-Vis、FESEM、XPS等分析手段对催化剂晶体结构、形貌及光电性能进行了表征,考察了柠檬酸(CA)/TiO2质量比R对CdS/C-TiO2复合光催化剂光催化性能的影响。实验结果表明,碳掺杂影响催化剂的晶体结构及其微观形貌,掺杂后光催化活性显著提高。在紫外光照射下进行光催化还原CO2反应,当CA/TiO2质量比R=3/1时,催化活性最高,还原产物HCOOH和HCHO总收率达到533μmol/(g.h)。  相似文献   

11.
H2S杂质对固态胺吸附剂吸附CO2性能的干扰机制还缺少全面研究。以Al2O3为载体负载聚乙烯亚胺(PEI)制备铝基固态胺吸附剂(PEI@Al2O3),系统探究了H2S对其CO2吸附容量、吸附速率和循环吸附性能的影响规律。结果表明:H2S与CO2共存时,会相互抢占吸附剂上的胺基活性位点,从而发生竞争性吸附,但在模拟沼气条件(40%CO2+59.5%CH4+0.5%H2S)下,H2S的吸附竞争力远小于CO2,H2S吸附被抑制,且二者的最佳吸附温度不一致,在CO2最佳吸附温度下,PEI@Al2O3的CO2吸附容量和循环稳定性均不受H2S干...  相似文献   

12.
采用浸渍法分别将二乙烯三胺(DETA),二乙醇胺(DEA),乙醇胺(MEA),三乙烯四胺(TETA),羟乙基乙二胺(AEE)负载到MCM-41介孔硅材料上,制成各种吸附剂,考察不同胺负载量的吸附剂对CO2的吸附和再生性能;结果表明质量负载量为50%的AEE/MCM-41吸附效果最佳,在80℃下具有很好的再生性能。  相似文献   

13.
煤炭大规模燃烧产生的CO2加剧了全球气候变暖和温室效应,钙基材料强化煤气化制氢技术能在捕集CO2的同时获得较高浓度的H2,工业应用前景良好。基于国内外钙基材料强化煤气化制氢技术的研究进展,论述了钙基材料强化煤气化制氢技术的系统流程,综述了钙基材料在系统中的CO2捕集和强化制氢反应特性和活性降低机理,总结了改善钙基材料循环稳定性、CO2捕集性能和催化制氢性能的方法,介绍了钙基材料强化煤气化过程中碱金属等微量元素的迁移路径,论述了微量元素对钙基材料在煤气化过程中脱碳/强化制氢活性的影响特性,分析了流态化和超临界气化条件下钙基材料对煤气化制氢特性的影响,介绍了基于热力学模拟的系统能量和经济性计算,归纳了钙基材料强化煤气化制氢系统和其他可再生能源系统的耦合性能及其对制氢特性的影响。基于当前钙基材料强化煤气化制氢技术的研究进展和潜在挑战,对未来可能的研究方向进行展望,认为筛选添加剂能多方位提高钙基材料的反应性能,采用解耦气化和煤/生物质共气化技术能实现更高的制氢性能和气化转化率,研究煤中...  相似文献   

14.
孙锋  申成  罗聪  罗童 《洁净煤技术》2021,(2):180-186
钙基吸附剂进行多次CO2捕集后,碳酸化效率会大幅衰减,此时的吸附剂能否高效脱硫利用是值得重点关注的问题。鉴于此,筛选了高性能合成钙基吸附剂和天然石灰石吸附剂,通过热重分析仪分析对比其在多循环CO2捕集后的碳酸化和硫酸化反应性能,采用微粒模型研究其硫酸化反应动力学特征。结果发现,高性能合成钙基吸附剂的碳酸化反应速率和CO2吸附能力明显高于石灰石吸附剂。在长达500循环的CO2捕集试验后,高性能合成钙基吸附剂的CO2吸附能力比石灰石高10倍以上,其SO2吸附能力相较于石灰石提升约40%。经历多次CO2捕集反应循环后,2种吸附剂的硫酸化能力均有提升:其中,石灰石吸附剂的提升幅度更大,硫酸化转化率从26%提升到35%,而高性能合成钙基吸附剂的硫酸化转化率则从38%提升到43%。通过微粒模型计算发现,2种吸附剂的硫酸化反应均是与SO2浓度相关的一级反应,多循环捕集CO2反应后,石灰石吸附剂的硫酸化反应活化能下降接近30%,而高性能合成钙基吸附剂的硫酸化反应活化能只下降了5%。研究结果说明2种不同钙基吸附剂在进行循环CO2捕集后,脱硫能力得到了不同程度的提高,且均可以较好地应用于SO2的脱除。  相似文献   

15.
温室气体CO2深刻地影响着人类的生存环境,根据国家能源发展战略,高容量捕获CO2主要用于缓解环境污染和生产高附加值化学品,如环状碳酸酯,因此,实现CO2高容量捕获具有较好的科学价值和研究意义。本工作采用来源广泛、廉价易得的叶酸作为前驱体,以KOH为活化剂,通过碳化—活化法获得CO2吸附性能优异的叶酸衍生多孔碳。首先,采用BET、SEM、SEM-EDS、XRD、Raman和XPS表征系统研究了叶酸衍生多孔碳的物性、纹理和结构特征。随后,通过1 bar 0℃和1bar 25℃的CO2吸附实验评估了叶酸衍生多孔碳的CO2吸附性能。最后,详细探究了叶酸衍生多孔碳的物化属性和多孔特性在CO2吸附过程中所起的作用。在我国实施“碳中和、碳达峰”的背景下,本研究可为工业领域实现负碳汇目标提供技术和理论支持。  相似文献   

16.
MgO吸附剂因其成本低廉、来源广泛、再生能耗低等优势在CO2吸附领域应用广泛,但比表面积低限制了其吸附性能。以高表面积、多级孔结构的含膦多孔有机聚合物POL-PPH3为载体,采用浸渍煅烧法和超声煅烧法制备得到POL-PPH3负载的MgO吸附剂(MgO/POL-PPH3),用于CO2捕集。探究制备方法、煅烧温度、煅烧时间等制备条件对MgO/POL-PPH3吸附剂上CO2吸附性能的影响。研究发现,浸渍煅烧法优于超声煅烧法,且随着煅烧温度和煅烧时间增加,MgO/POL-PPH3样品上CO2吸附容量逐渐降低。采用浸渍煅烧法,煅烧温度300℃,煅烧时间1 h时,MgO/POL-PPH3-300-1吸附剂上获得最优CO2吸附量,达0.55 mmol/g。在组成为12%CO2,其余为氮气的模拟烟道气中,MgO/POL-PPH3  相似文献   

17.
由于磷酸盐过量引起的富营养化对生态系统和人类健康产生的不利影响,已成为迫切需要解决的全球性环境问题。采用共沉淀法制备了Mn2+掺杂的Mg/Al/Mn三元类水滑石材料,实现了废水中磷酸盐的有效去除。采用X射线衍射(XRD)技术对Mg/Al/Mn类水滑石的结构进行了表征,并考察了吸附时间、初始磷浓度以及溶液pH值对磷酸盐吸附效果的影响。结果表明:适量掺杂Mn2+能增大类水滑石的层间距,有利于磷酸盐的吸附。Mg/Al/Mn类水滑石对磷酸盐的吸附动力学过程符合准二级动力学模型,而吸附等温线适合用Langmuir模型描述。当Mn2+占所有金属离子百分比为2.5%时,理论饱和吸附量最大,达到119.7 mg/g,约为Mg/Al水滑石的2倍。此外,Mg/Al/Mn类水滑石还具有宽的pH值适应范围(3~11)。以上结果表明Mg/Al/Mn三元类水滑石是一种有前途的吸附剂,可用于废水中磷酸盐的高效处理。  相似文献   

18.
以4种不同品牌多孔蜂窝活性炭为研究对象,采用N2物理吸附、扫描电镜SEM、透射电镜TEM和XRF等方法对活性炭物化结构进行了表征,探讨了不同品牌蜂窝活性炭材料的成分和孔隙结构对CO2吸附的影响。并通过对比0,20,40℃下CO2的吸附等温线,分析CO2在不同蜂窝活性炭材料表面的吸附热力学特性,拟合出CO2气体吸附量与等量吸附热之间的关系。结果表明:N2和CO2吸附等温线属于Ⅰ型吸附等温线,样品主要以微孔结构为主,存在少量介孔结构;不同温度下活性炭吸附CO2曲线均符合Langmuir吸附模型;温度升高,CO2在活性炭材料上的吸附量均减小,说明升温不利于CO2在活性炭上的吸附;相同条件下,泰州800活性炭(TZ800)的吸附量高于淄博800活性炭(ZB800)的吸附量,表明CO2更易吸附于TZ800活性炭上,这可能得益于其丰富和发达的微孔结构。同时TZ...  相似文献   

19.
重点综述了近五年来MOFs材料在单组分CO2吸附领域的最新研究进展,详细地介绍了近几年来被深入研究几种MOFs材料,主要按照国内外常用的IRMOFs、MILs、UiOs、ZIFs、其它系列等MOFs材料进行分类,从掺杂金属或氮原子、调节孔径、氨基功能化以及合成MOFs复合材料等方面,对其CO2吸附性能和吸附机理进行了分析,展望了MOFs材料未来的发展方向,对MOFs提供了系统性理解,以期为MOFs材料应用到工程实践提供一定参考。  相似文献   

20.
含碳固废来源广、产量大,其大量堆存严重制约了环境可持续发展,因此含碳固废资源化利用意义重大。利用含碳固废制备多孔炭材料是其清洁高效利用的重要方式之一。对多孔炭进行硫原子掺杂不仅可使材料表面的亲水性得到改善,还可以改变材料表面的化学异质性,生成有利于CO2捕集的活性位点,强化材料对CO2分子的吸附作用,从而提高其CO2吸附容量。简述了固废基硫掺杂多孔炭材料的制备方法,总结了硫掺杂多孔炭材料用于CO2吸附的最新研究进展,并对硫掺杂多孔炭材料未来发展趋势及其在CO2吸附领域的工业化应用进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号