首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《塑性工程学报》2020,(2):128-134
在变形温度为440、460和480℃,应变速率为0. 001、0. 01和0. 1 s~(-1)的条件下,依次沿0°、45°和90°的轧制方向,对7075铝合金板材进行热拉伸试验,研究7075铝合金的高温力学性能。结果表明:7075铝合金的力学性能受变形温度、应变速率及轧制方向的影响,7075铝合金的抗拉强度随变形温度的升高而降低,随应变速率的增大而增加,且抗拉强度的增长率比较大;抗拉强度在轧制方向为0°时最高,45°时次之,90°时最低。通过对7075铝合金热拉伸获得的试验数据进行参数拟合,建立了在不同轧制方向上的Arrhenius型本构方程。  相似文献   

2.
挤压态7075铝合金高温流变行为及神经网络本构模型   总被引:1,自引:0,他引:1  
采用Gleeble1500D热模拟实验机研究挤压态7075铝合金在变形温度为250~450℃、应变速率为0.01~10s-1下单道次压缩过程的高温流变行为。结果表明:材料在350℃及以下变形时,流变应力曲线呈动态回复型;在温度为350℃以上、应变速率为0.1s-1时,流变曲线局部陡降明显;当应变速率为10s-1时,流变曲线发生波动,呈动态再结晶型;挤压态7075铝合金的流变应力曲线峰值应力及稳态应力均高于铸态合金的,且在变形温度较高时,挤压态材料更易于发生动态软化。基于BP神经网络建立挤压态7075铝合金的本构关系模型,预测值与实验值对比表明:所建立的本构模型整体误差在5.35%以内,拟合度为2.48%,该模型可以用于描述7075铝合金的高温变形流变行为,为该合金热变形过程分析和有限元模拟提供基础。  相似文献   

3.
采用Gleeble-3800热模拟机,沿与原材料轴线呈0°、45°、90°方向切割试样,在320、400和480℃,变形速率0.01、0.1和1/s时对7075铝合金进行试验。研究了温度、应变速率对7075铝合金热变形过程中力学性能及显微组织的影响。结果表明:在同一应变速率下,7075铝合金的流变应力和进入稳态流动时所需的应变随温度的升高而降低;在低温成形时,晶粒的形状连续而均匀;随着变形温度升高,晶粒逐渐变得粗大;在较高温度变形时,大晶粒周围有细小的等轴晶出现,发生了动态再结晶。在同一变形温度下,7075铝合金的流变应力随应变速率的增大而提高;应变速率越大,越易出现动态再结晶。  相似文献   

4.
采用Gleebe-3500型热模拟试验机对7075铝合金进行等温恒应变速率热压缩实验,研究了该合金在变形温度为250~450℃、应变速率为0.001~1 s~(-1)条件下的热变形行为,并据此建立了热加工图。结果表明:流变真应力随应变速率的升高而增大,随变形温度的升高而减小;经250℃、16 h欠时效处理的样品,其峰值应力要显著大于未经时效的样品;真应变为0.3和0.7的热加工图在250~350℃的温度区间、0.01~1 s~(-1)的应变速率区间均出现流变失稳;16 h欠时效态7075铝合金的最佳热变形参数为:变形温度400~450℃、应变速率0.01~0.001 s~(-1)。  相似文献   

5.
为了获得7075高强铝合金的温热成形合理变形的工艺参数,采用Gleeble-3500热模拟试验机测试7075-T6铝合金的应力-应变曲线。研究了该合金在变形温度为150~300℃和应变速率为0.01~10 s^(-1)条件下的流变行为,并基于Arrhenius本构方程建立了0.3~0.6应变下7075-T6铝合金的热加工图,最后结合金相显微组织验证了热加工图的可靠性和实用性。结果表明:7075-T6铝合金对变形温度、应变速率、应变量具有高度敏感性,热形变激活能Q=291.151 kJ·mol^(-1);修正后的Arrhenius本构方程的拟合结果良好,相关系数r值与平均绝对误差AARE分别为99.65%和5.54%,能较好地预测7075-T6铝合金的流变行为;在应变为0.6时,最佳的温热加工安全区域范围为温度为250~300℃、应变速率为0.01~0.05 s^(-1)。  相似文献   

6.
利用热物理模拟机Gleeble1500进行多组圆柱试样的热物理模拟压缩试验,试验温度为250~450℃,应变速率为0.01~10 s-1.结果表明,7075铝合金热压缩温度在300、350、400和450℃时流变行为呈近稳态,而在250℃时呈非稳态.应用多元线性同归方法分析计算了7075合金唯象本构模型所需的一组系数及热变形的激活能.获得了能够较精确表示7075合金材料的流动应力与温度、应变速率和应变之间关系的唯象本构模型,为塑性成形模拟提供了所需的基本模型.  相似文献   

7.
通过热压缩物理模拟试验得到7075铝合金的真应力-真应变数据,将其输入到Deform-2D软件中,作为材料模型,选择Cockroft&Latham模型及剪切摩擦模型,设置温度300℃,压下量60%,应变速率为0.01、0.1、1、10 s-1,摩擦系数为0.1、0.2、0.3、0.5、0.7,对试样压缩过程中的最大损伤值进行模拟。模拟分析得到了在一定条件下,7075铝合金热压缩过程中最大损伤值随压下量、摩擦系数及应变速率的变化规律。  相似文献   

8.
采用Gleeble-3500热模拟机对T4态AA6014铝合金板进行变形温度440~560℃、应变速率0.01~10 s~(-1)的热变形实验。研究了变形条件对AA6014铝合金显微组织的影响。结果表明:变形温度440、480℃的AA6014合金组织没有发生动态再结晶,组织中晶界模糊,有明显带状拉长晶粒,比原始组织粗大。变形温度520、560℃的AA6014合金动态再结晶组织明显,晶界清晰,晶粒基本为等轴状,560℃试样再结晶组织更为粗大,发生粗化。AA6014合金在变形温度520℃,随着应变速率的增大,再结晶晶粒越来越大,晶粒越来越不均匀;应变速率0.01 s~(-1)下动态再结晶晶粒细小均匀,效果最佳。  相似文献   

9.
热压缩7075铝合金流变应力特征   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为.结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1 s^-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为.  相似文献   

10.
采用Gleeble-3800型热模拟试验机进行压缩试验,变形温度为320~480℃、应变速率为0.1~1 s-1.压缩方向与7A04铝合金棒材轴向分别成0°、45°、90°.结果表明:7A04铝合金高温变形的流变应力随温度的升高和应变速率的降低而减小;在低温(T=320℃)和小应变速率(ε=0.1 s-1)的条件下7A04铝合金的各向异性最明显;在高温(T=480℃)和小应变速率(ε=0.1 s-1)的条件下,7A04铝合金的各向异性最不明显.  相似文献   

11.
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为。结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1s-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为。  相似文献   

12.
在350、400和450℃温度下,对7075铝合金拉伸试样进行了应变速率0.001、0.01和0.1s-1的恒应变速率法拉伸试验;对预缩颈试样进行了速度为0.9和9mm·min-1的恒速拉伸试验;利用DEFORM-2D有限元软件对恒速拉伸过程进行模拟。结果表明:变形温度为影响7075铝合金断裂极限的主要因素;7075铝合金在研究温度范围内C~L损伤模型临界损伤值在0.79~1.42范围内变化;棒料拉伸过程中损伤值由中心向表面逐渐减小。  相似文献   

13.
AZ31B镁合金热压缩力学行为与本构方程建立   总被引:1,自引:1,他引:0  
根据对铸态AZ31B镁合金在温度为280~440℃、应变速率为0.001~0.1 s-1条件下进行热压缩试验,分析了变形程度、应变速率和加热温度对其流动应力的影响,结果表明,该合金热变形时的流动应力对变形温度和变形速率极为敏感,随变形温度的升高而降低,随变形速率的增加而增大.在温度为440℃,应变速率小于0.01 s-...  相似文献   

14.
开展了7075-T6铝合金在预强化热冲压工艺条件下的高温变形行为实验研究,设计搭建了7075-T6铝合金快速加热/降温-高温力学性能实验平台,满足了快速加热、温度路径控制和全场应变测量的实验需求。研究了短流程热冲压工艺路线下7075-T6铝合金的高温变形行为,建立了考虑析出相回溶度的高温变形本构模型。分析了7075-T6铝合金的高温回溶/拉伸性能和高温预变形强化规律。总结了回溶温度、成形温度、高温预变形量对材料流动应力和最终服役性能的影响。结果表明,7075-T6铝合金在250~300℃温度范围内塑性提升明显,增加3%高温预变形量可以最终得到接近T6态94%的抗拉强度,为PHF工艺的应用与仿真模型建立提供了指导。  相似文献   

15.
目的研究气体温度对冷喷涂7075铝合金涂层性能的影响,以期为制备高性能涂层提供重要参考。方法利用冷喷涂技术,在较高的工作气体压力(5 MPa)下,通过改变工作气体温度(450、500、550、600℃),采用氮气在纯铝基体上制备了大厚度7075铝合金涂层。采用光学显微镜(OM)、扫描电子显微镜(SEM)对涂层组织结构及孔隙率进行了分析测定,用维氏显微硬度法测定涂层硬度,通过拉伸实验测定涂层结合强度,研究了冷喷涂工作气体温度对7075铝合金涂层组织及沉积特性的影响。结果工作气体温度在450~550℃范围时,对涂层组织及力学性能影响有限。当工作气体温度为450℃时,涂层孔隙率为0.14%,显微硬度为117.8HV0.1,结合强度超过55.3 MPa。但过高的工作气体温度并不利于冷喷涂7075铝合金涂层的制备,当喷涂气体温度达到600℃时,涂层孔隙率升高到4.2%。结论仅采用廉价的氮气即可制备高致密度和高结合强度的冷喷涂7075涂层,当主气温度在450~550℃区间时,涂层微观组织和性能随气体温度变化不大,而过高的工作气体温度(600℃)并不利于冷喷涂7075涂层相关性能的提升。  相似文献   

16.
在Gleeble-3500热模拟试验机上对圆柱体5083铝合金试样进行温度为300~500℃、应变速率为0.001~1 s~(-1)条件下的热压缩试验。对实验获得的真应力应变曲线进行摩擦修正,依据摩擦修正后的应力应变曲线计算本构方程,采用包含Zener-Hollomon参数的本构方程描述摩擦修正后的5083铝合金流变应力行为,其热变形激活能为164.17 kJ/mol。根据摩擦修正后的真应力-应变曲线绘制热加工图,随着真应变的增加,失稳区域向着高应变速率、高变形温度区域扩展,5083铝合金适宜热变形工艺参数:变形温度为400~500℃、变形速率为0.01~0.1s~(-1)与340~450℃、变形速率为0.001~0.01 s~(-1)。随着变形温度升高与应变速率降低,晶粒内位错密度减少,主要软化机制逐渐由动态回复转变为动态再结晶。  相似文献   

17.
2219铝合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
欧玲  孙斌  王智 《热加工工艺》2008,37(2):42-45
通过Gleeble-1500热模拟机对2219铝合金在应变速率为0.1~10s-1、变形温度为320~440℃的流变应力行为进行了研究.结果表明:在实验条件范围内,2219铝合金热压缩变形时,流变应力随变形温度的升高而降低,随变形速率提高而增大;可采用Zener-Hollomon参数的的双曲正弦函数来描述2219铝合金高温变形的峰值流变应力行为;获得的峰值流变应力解析式中,A、α和,n值分别为2.65×10 10s-1、0.020 MPa-1和6.91,热变形激活能Q为153.3kJ/mol.  相似文献   

18.
温度对7075铝合金热变形显微组织演化的影响   总被引:4,自引:2,他引:2  
采用Gleeble-1500D热模拟机对7075铝合金进行温度范围300~400℃、恒应变速率为1/s的热压缩实验.对热变形后材料的显微组织进行透射电镜观察,研究温度对7075合金热变形过程中的显微组织演化的影响.结果表明:在本实验条件下7075合金的流变应力曲线为动态回复型流变曲线;7075合金的显微组织演变经历由无规则排布的位错演化成胞状组织、亚晶组织、亚晶长大等过程;温度升高,显微组织的演化过程缩短,变形材料的亚晶尺寸增大.  相似文献   

19.
在热冲压过程中,AA7075高强铝合金板料经充分固溶后移入室温模具进行冲压成形并淬火。为表征AA7075铝合金在热冲压工艺中的变形行为,在温度200~480℃、应变速率0.01~10s-1范围内进行了高温拉伸试验。基于Arrhenius类型本构模型、Johnson-Cook模型以及Zerilli-Armstrong模型提出了多种修正本构模型,并应用实验所获流变曲线进行了拟合。提出的修正模型通过将模型参数表示为应变、应变速率及温度相关的多项式函数耦合了应变、应变速率及温度对流变应力的影响,并通过均方误差(MSE)以及相关系数R值对模型流变应力预测准确性进行了评价。结果表明,修正的Johnson-Cook模型能够更加准确的预测AA7075高温流变行为。  相似文献   

20.
对高硅铝合金光谱标准样品在应变速率为0.01~1s-1、变形温度为350~500℃条件下的热压缩变形行为进行实验研究。结果表明:高硅铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出高硅铝合金材料的应变硬化指数n以及变形激活能Q,获得了高硅铝合金高温条件下的流变应力本构方程;研究工艺参数(变形温度t、应变速率ε)对晶粒尺寸的影响,确定最佳工艺参数:t=400℃,ε=0.1s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号