首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2519铝合金热压缩变形流变应力行为   总被引:19,自引:6,他引:13  
在 Gleeble- 15 0 0热模拟机上对 2 5 19铝合金进行等温热压缩实验 ,变形温度为 30 0~ 5 0 0℃ ,应变速率为0 .0 5~ 2 5 s- 1 ,研究其热压缩变形的流变应力行为。结果表明 :2 5 19铝合金真应力 -应变曲线在低应变速率 (ε<2 5 s- 1 )条件下 ,流变应力开始随应变增加而增大 ,达到峰值后趋于平稳 ,表现出动态回复特征 ;而在高应变速率 (ε≥ 2 5 s- 1 )条件下 ,应力出现锯齿波动达到峰值后逐渐下降 ,表现出不连续再结晶特征。在用 Arrhenius方程描述 2 5 19铝合金热变形行为时 ,其变形激活能 Q为 16 7.81k J/ mol  相似文献   

2.
7039铝合金高温的热变形行为   总被引:2,自引:3,他引:2  
采用圆柱试样在Gleeble-1500材料热模拟实验机上对7039铝合金进行高温等温压缩实验,研究了该合金在变形温度为300-500℃,应变速率为0.01-10/s条件下的流变变形行为.结果表明:变形温度和应变速率对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随心变速率的增加而升高;在应变速率(ω)<10/s条件下合金表现出动态回复特征,而应变速率(ω)=10/s时,合金发生了局部动态再结晶.7039铝合金的高温流变行为可用Zener-Hollomon参数描述.从流变应力、应变速率和变彤温度的相关性,得出了该合金高温变形时的四个材料常数.  相似文献   

3.
采用Gleeble-1500热模拟机对圆柱试样进行恒温和恒速压缩变形实验,研究了01570铝合金在变形温度为360-480℃、应变速率为0.001~1s^-1条件下的流变变形行为。结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,达到峰值后趋于平稳,表现出动态回复的特征。可用包含Arrhenius项的Zener-Hollomon参数描述01570铝合金高温塑性变形时的流变行为。  相似文献   

4.
在Gleeble-1500热模机上对2026铝合金进行了热压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10 S-1条件下热压缩变形流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐减小并趋于平稳,表现出流变软化特征;应力峰值随温度的升高而减小,随应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述2026铝合金热变形行为,其变形激活能为256.02KJ/mol.合金热压缩变形的主要软化机制由动态回复转化为连续动态再结晶.  相似文献   

5.
在Gleeble-1500热模拟机上,对2A70铝合金进行等温热压缩试验,变形温度为300℃~500℃,应变速率为0.01s^-1~10s^-1,研究其热压缩变形的流变应力行为。结果表明:2A70铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;在应变速率ε=1.0s^-1,变形温度高于420℃条件下,应力出现锯齿波动,表现出不连续动态再结晶特征。在用本构方程描述2A70铝合金热变形行为时,其变形激活能Q为180.83kJ/mol。  相似文献   

6.
7150铝合金高温热压缩变形流变应力行为   总被引:5,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

7.
在Gleeble-1500热模拟机上对7056铝合金进行热压缩实验,变形温度为300~450℃,应变速率为0.01~10 s~(-1),研究其热压缩流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐趋于平稳;应力峰值随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为,其变形激活能为224.3826 kJ/mol.  相似文献   

8.
2219铝合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
欧玲  孙斌  王智 《热加工工艺》2008,37(2):42-45
通过Gleeble-1500热模拟机对2219铝合金在应变速率为0.1~10s-1、变形温度为320~440℃的流变应力行为进行了研究.结果表明:在实验条件范围内,2219铝合金热压缩变形时,流变应力随变形温度的升高而降低,随变形速率提高而增大;可采用Zener-Hollomon参数的的双曲正弦函数来描述2219铝合金高温变形的峰值流变应力行为;获得的峰值流变应力解析式中,A、α和,n值分别为2.65×10 10s-1、0.020 MPa-1和6.91,热变形激活能Q为153.3kJ/mol.  相似文献   

9.
2519铝合金热变形流变行为   总被引:23,自引:11,他引:23  
采用Gleeble-1500热模拟机进行高温等温压缩实验,研究了2519铝合金在变形温度为300~450℃、应变速率为0.01~10 s-1条件下的流变变形行为.结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,在应变速率ε<10 s-1条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复的特征;而在ε=10 s-1,t≥350℃的变形条件下,合金发生了局部动态再结晶.可用包含Arrhenius项的Zener-Hollomon参数描述2519铝合金高温塑性变形时的流变行为.  相似文献   

10.
5083铝合金热压缩变形流变应力行为   总被引:4,自引:2,他引:4  
在Gleeble-1500热模拟机上,当变形温度为300-500℃、应变速率为0.01-10 s^-1、真应变为0-0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为。通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程。运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好。  相似文献   

11.
在Gleeble-1500热模拟仪上进行热压缩实验,研究在变形温度250-450°C、应变速率0.0005-0.5 s^-1时淬火状态下的7005铝合金的热变形行为。实验结果表明:淬火状态7005合金的流变应力受变形温度和应变速率的双重影响,热变形过程中的流变应力可用Zener-Hollomon参数的指数型方程表示。通过比较本构方程计算出的流变应力和实验测量的流变应力发现预测结果和实验结果有很好的相符性。基于动态材料模型,在真应变为0.1、0.3和0.5处构建了淬火状态下的7005铝合金的热加工图。通过加工图分析及微观组织观察发现合金的最优热加工区域为:270-340°C,0.05-0.5 s^-1,在该区域内变形时合金发生了合理的动态再结晶行为。合金的流变不稳定性与绝热剪切带以及局部流变的产生有关。因此,为获取满意的性能,在热加工时应避开这些不稳定的区域。  相似文献   

12.
利用Gleeble-3500热模拟试验机扭转单元,在温度为360~480℃,应变速率为0.001~1 s~(-1)条件下,研究了具有纤维状晶粒组织7A04铝合金的流变行为。采用ZIESS PL-A662数码光学显微镜分析合金显微组织的演变规律,利用Zener-Hollomon参数法通过数学分析构建了该合金基于扭转的高温塑性变形本构方程。由应力-应变曲线分析可得:流变应力随温度的升高逐渐降低,随应变速率的增大而升高。在扭转中,随着棒材半径的增加,应变增大,晶粒形状也随之变化。组织分析表明:从试样的外表面到轴心的晶粒按形状可大体分为等轴晶粒区、椭圆形晶粒区及纤维状晶粒区。其原因是转动过程中距离试样轴心距离越远,变形量越大,动态再结晶越充分。  相似文献   

13.
采用等温热压缩试验,研究了AA7085铝合金在变形温度为300~450℃、应变速率为0.01~10 s-1的条件下的热变形行为和加工图。通过光学显微镜(OM),电子背散射(EBSD)和透射电子显微镜(TEM)表征了材料的微观组织。结果表明在不同应变条件下的加工图的叠加得到优化的工艺参数为:温度为390-450 ℃,应变速率低于 0.1s-1. 微观组织表征表明了在安全区内,动态回复和动态再结晶是主要的变形机制。而在低温低速的条件下,在应变为0.5与0.7之间的第二相粒子的粗化可能是导致加工图从失稳区向安全区转换的原因。  相似文献   

14.
碳化硅颗粒增强铝基复合材料(SiCp/2024Al)的热变形行为   总被引:1,自引:2,他引:1  
在变形温度分别为 30 0 ,35 0 ,40 0 ,45 0 ,5 0 0℃ ,应变速率分别为 0 .0 2 ,0 .1,0 .5s-1,高径比分别为 1和 2的变形条件下 ,采用Gleeble 15 0 0热模拟试验机对 17%SiCp/ 2 0 2 4Al(体积分数 )复合材料的热变形行为进行了研究。结果显示 :复合材料的流变应力随变形温度的升高、应变速率的降低而降低 ;在不同的变形温度、应变速率和高径比的条件下 ,复合材料表现出不同的加工硬化和软化行为。进一步的分析表明 :复合材料的形变过程中 ,加工硬化过程受渗透力的影响 ,主要取决于变形温度 ;软化过程取决于同时存在的动态回复和动态再结晶过程。  相似文献   

15.
16.
Hot deformation behavior and microstructural evolution of as-homogenized 7A65 Al alloy under isothermal compression at temperatures of 573-713 K and strain rates of 0.1-10.0 s-1 were investigated.It was found that the flow stress of 7A65 Al alloy exhibited a typical dynamic recovery characteristic at high-temperature deformation conditions,and a sixth-order polynomial strain compensated Arrhenius constitutive equation was proposed to describe the flow behavior.Based on the dynamic mat...  相似文献   

17.
采用Gleeble-3500热模拟试验机对5005铝合金材料进行热压缩试验,应变速率为0.01~10 s~(-1),变形温度为300~500℃,研究了材料的流动应力,并建立了本构方程。研究结果表明:在本实验中,5005铝合金具有负温度敏感性和正应变速率敏感性。变形初期,流动应力随变形程度的增加而迅速升高,达到峰值后,逐渐趋于平缓,此时流变曲线表现为稳态流变特征;该铝合金的热压缩流动应力可用包含Zener-Hollomon参数的双曲正弦关系来描述,其热变形激活能Q为180.69 k J·mol~(-1)。  相似文献   

18.
采用热压缩试验对A286合金变形温度为950-1150 ℃,应变速率为0.1-10 s-1的流变应力、组织进行了研究。结果表明,随温度和应变速率的增加,再结晶分数增加。采用双曲正弦函数描述了峰值应力与Zener-hollomon 参数的关系,测试范围内,峰值应力条件下的再结晶激活能为464 kJ/mol,峰值应力方程为,峰值应力计算值和试验值吻合较好。  相似文献   

19.
在Gleeble-1500热模拟机上实施热压缩试验,研究2195铝锂合金在变形温度360~500℃,应变速率0.1~10 s-1时的热变形行为,并通过OM和EBSD研究了热变形中微观组织的演变.基于动态材料模型理论及Zener-Holloman参数,构建了2195铝锂合金的应变量为50%时的加工图及本构方程.结果表明,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号