首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对微博文本内容短、稀疏、高维等特点,提出一种改进的半监督微博聚类算法。该算法利用词项间的关系丰富文本特征,通过定义词项文档间关联关系和词项文档内关联关系揭示词项间语义的关联程度,并由此自动生成有标记的数据来指导聚类过程。对词项先验信息进行成对约束编码,构建基于词项间成对约束的三重非负矩阵分解模型来实现微博的半监督聚类。实验结果表明,该算法可以减少繁琐的人工标记过程,并能高效地进行微博聚类。  相似文献   

2.
微博用户利用标签信息表征其兴趣及属性,通过分析微博用户标签特点以及现有微博推荐方法的局限性,提出一种改进的基于多标签语义关联关系的微博兴趣建模方法。为了解决现有加标方法忽略了语义关联及多标签间关联的问题,首先通过计算标签对在微博用户集合中的共现频率得到标签对语义内联关系;其次构建由标签对连接词组成的路径,通过共享熵进一步计算标签对语义外联关系;最后将两者结合得到标签对语义关联关系矩阵,由此来对用户 标签矩阵进行更新,得到基于多标签语义关联关系的微博用户兴趣模型。以新浪微博公开API抓取的大量微博信息作为实验数据,进行了一系列的实验和分析,结果表明本文构建的用户兴趣模型具有较好的性能。  相似文献   

3.
为解决微博用户兴趣漂移问题,以人类记忆学中遗忘曲线为基础,提出一种微博用户兴趣模型,利用用户历史信息预测当前兴趣。在预测过程中,用户关注某信息的时间距离当前时间越远,该信息越容易被遗忘,其对用户当前兴趣的影响越小;用户关注某一领域的信息越多,印象越深刻,对该领域的兴趣度越高。这两点与人类对知识逐渐遗忘和重复学习的过程具有高度相似性,因此该模型预测准确性更高。实验结果表明,该模型能较好地预测微博用户兴趣,召回率可达85.3%,实用性较强。  相似文献   

4.
随着微博研究的深入,对微博用户可信度的评价成为一个研究热点。针对微博用户可信度评价的问题,提出了一种基于关联关系的用户可信度分析方法。以新浪微博为研究对象,首先从用户的资料信息、交互信息和行为信息三个方面出发,分析了用户的7个相关特征,利用层次分析法(AHP),进而得到用户自评价可信度;然后以用户自评价作为基点,以用户关系网络作为载体,结合用户之间潜在的用户互评关系,通过改进PageRank算法,提出了用户可信度评价模型User-Rank,进而,利用关系网络中其他用户对待分析用户的可信度进行综合评价。大规模的微博真实数据的实验表明,所提方法能够取得良好的用户可信度评价效果。  相似文献   

5.
微博平台隐含潜在的用户信息,通过微博数据挖掘用户兴趣具有重要的社会意义。结合用户兴趣与微博信息的特点,提出了一种文本聚类与兴趣衰减的微博用户兴趣挖掘(TCID-MUIM)方法。首先,通过基于词林的同义词合并策略弥补建模时词频信息不足的弊端;其次,利用二次Single-Pass不完全聚类算法将用户微博划分为多个簇,将簇合并为同一文档以弥补微博文本短小难以挖掘主题信息的问题;最后,通过LDA模型建模,并考虑用户兴趣随时间变化的问题,引入时间因子,将微博—主题矩阵压缩为用户—主题矩阵,获取用户兴趣。实验表明,较之传统建模方法与合并用户历史微博为同一文档的建模方法,TCID-MUIM方法挖掘的用户兴趣主题具有更好的主题区分度,且更贴合用户的真实兴趣偏好。  相似文献   

6.
相似用户挖掘是提高社交网络服务质量的重要途径,在面向大数据的社交网络时代,准确的相似用户挖掘对于用户和互联网企业等都有重要的意义,而根据用户自己的兴趣话题挖掘的相似用户更符合相似用户的要求。提出了一种基于用户兴趣话题进行相似用户挖掘的方法。该方法首先使用TextRank话题提取方法对用户进行兴趣话题提取,再对用户发表内容进行训练,计算出所有词之间的相似度。提出CP(Corresponding Position similarity)、CPW(Corresponding Position Weighted similarity)、AP(All Position similarity)、APW(All Position Weighted similarity)四种用户兴趣话题词相似度计算方法,通过用户和相似用户间关注、粉丝重合率验证相似用户挖掘效果,APW similarity的相似用户的关注/粉丝重合百分比为1.687%,优于提出的其他三种算法,分别提高了26.3%、2.8%、12.4%,并且比传统的文本相似度方法Jaccard相似度、编辑距离算法、余弦相似度分别提高了20.4%、21.2%、45.0%。因此APW方法可以更加有效地挖掘出用户的相似用户。  相似文献   

7.
仲兆满  管燕  胡云  李存华 《软件学报》2017,28(2):278-291
微博用户兴趣挖掘是个性化推荐、社群划分的基础工作.在深入分析微博网络特点的基础上,给出了能够揭示微博网络多模性的描述模型,对面向微博网络的后续研究具有参考价值.根据微博网络的特点,提出了基于背景的用户静态兴趣表示及挖掘方法,以及基于微博的用户动态兴趣表示和挖掘方法.针对微博网络中缺少背景信息、发表微博很少的大量不活跃用户,提出了基于关注的用户兴趣挖掘方法.以新浪微博为例,选取了时尚、企业管理、教育、军事、文化这5个领域进行用户兴趣挖掘及相似度计算的实验分析和比较,结果表明,与主流的兴趣挖掘方法相比,该微博用户兴趣的表示和挖掘方法可以有效地改善微博用户兴趣挖掘的效果.  相似文献   

8.
Web媒体被公认为继报纸、广播、电视之后的“第四媒体”.而Web2.0的迅速普及,又使当今的Web媒体呈现了一种“自媒体”形式,即每个用户既是信息的接受者,也是信息发布者和信息转发者,在信息传递过程中,用户与用户互动,影响信息传播的进程.用户本身的特性对于传播有很大影响,信息传播依赖于用户个体的行为模式.因此,需要对用户和传播话题之间的关系进行建模,来度量用户对某个话题的感兴趣程度.论文提出了有效的算法来对用户进行感兴趣的话题推荐,该算法基于非负矩阵分解理论,分析用户发表过的内容,将用户感兴趣的话题推荐给该用户.该文针对研究小组下载的真实数据集-科学网数据集进行实验分析,实验结果表明算法能够有效地将用户感兴趣的话题推荐给用户.  相似文献   

9.
微博作为国内主流社交网站,信息量与日俱增.目前微博用户兴趣挖掘方法大多停留在研究用户浏览网页时点击行为、用户所发微博内容或所在社区等表象层面,尚未深入到微博用户使用特性层面.从用户微博内容出发,结合用户关注对象微博,提出一种改进作者主题模型UF_AT(users focus-author topic).最后对真实数据进行实验得出,模型在用户兴趣主题以及主题词概率值上均高于AT模型,而且用户兴趣主题准确、全面,同时验证了UF_AT模型在挖掘用户兴趣中的有效性.  相似文献   

10.
11.
为解决微博用户兴趣提取不准确的问题,提出一种基于用户扩展兴趣的微博推荐方法。该方法将用户个体兴趣与关联兴趣结合为用户扩展兴趣进行微博推荐。其中,用户个体兴趣从用户标签、发布微博及交互微博中提取;用户关联兴趣通过用户与其关注用户间的关注关系强度、交互频繁程度和个体兴趣相似度获取。最后,计算用户扩展兴趣与待推荐微博的相似度,对相似度降序排列产生推荐列表。实验结果表明,新方法较传统方法更具有效性和准确性。  相似文献   

12.
为了得到更多的用户兴趣信息,提出了一种新的高效的用户兴趣模式获取方法,面向层次结构的信息网站,提供动态的多层次用户兴趣模式。该方法根据网站和用户兴趣所具有的层次性特征,利用蚁群算法,将用户对网站结点的一次浏览过程,对应于蚂蚁的一次觅食活动周期,从各个层次求出相应路径的信息素浓度和支持度,从而得到用户对该结点的偏好函数值,再依据此值求得用户兴趣模式。实验表明了该方法的有效性。  相似文献   

13.
对信息主动服务(即“推”服务)中用户对图像兴趣问题进行了研究。基于分析用户对图像内容的兴趣程度、图像对图像内容的从属度和用户对图像的兴趣程度,提出了基于图像内容的用户兴趣模型,并对模型的性质和维护进行了初步分析。最后通过仿真算例演示了该模型的计算流程。  相似文献   

14.
为了解决短文本信息流的特征稀疏性对热点话题发现带来的挑战,提出了结合词语互信息和概率主题模型的微博热点话题发现方法。通过建立词共现矩阵并应用对称非负矩阵分解算法获取词项-主题矩阵,再利用概率潜在语义分析模型进行主题发现,最终通过定义微博热度分析和排序,有效地支持微博热点话题发现。实验表明,此方法能有效地进行话题聚类并检测出热点话题。  相似文献   

15.
基于隐式反馈的自适应用户兴趣模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对现有用户兴趣模型在模型建立以及更新阶段漂移策略的缺陷,设计了一种改进的基于隐式反馈的自适应用户兴趣模型。并将该模型与遗忘策略模型、滑动时间窗口模型和固定比例模型,做了精确率的对比实验,实验结果显示该模型的性能优于其他三个模型。  相似文献   

16.
高媛  王淑敏  孙建飞 《计算机应用》2015,35(9):2457-2460
针对现实生活中人们的社交关系和兴趣爱好对节点进行社会活动的驱动作用,提出了一种基于用户兴趣相似性的节点移动模型。该模型将节点对活动的感兴趣程度抽象为一个兴趣概率矩阵,利用皮尔逊相关系数计算节点的兴趣相似群体。仿真实验表明,该模型在一定时间范围内节点的相遇时间间隔和相遇持续时间的互补累积分布函数近似服从幂律分布,更加接近真实数据集统计结果得到的曲线,同时也表明了节点在进行夜间活动时,具有很强的时空规律性。  相似文献   

17.
为了克服传统的谱聚类算法求解normalized cut彩色图像分割时,分割效果差、算法复杂度高的缺点,提出了一种基于鱼群算法优化normalized cut的彩色图像分割方法.先对图像进行模糊C-均值聚类预处理,然后用鱼群优化算法替代谱聚类算法求解Ncut的最小值,最后通过最优个体鱼得到分割结果.实验表明,该方法耗时少,且分割效果好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号