首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The extraction of C2H4 from C2H6/C2H4/C2H2 mixtures is of great significance in the chemical industry for C2H4 production but the process remains challenging due to the similarity of these C2 hydrocarbon species in their molecular size and physical properties. Here, we report the fluorination of a stable Zr-MOF, UiO-66, to fine-tune the pore dimensions and pore functionality. In particular, UiO-66-CF3 shows notably preferential adsorption of C2H6 and C2H2 over C2H4, with C2H2/C2H4 and C2H6/C2H4 selectivities of 1.4 and 1.9, respectively. Theoretical calculations provide insight into the binding sites of UiO-66-CF3 for C2 hydrocarbon adsorption. Breakthrough experiments further confirmed the capability of the material for purification of C2H4 from C2H2/C2H4/C2H6 ternary mixtures, evidenced by the high purity C2H4 (99.9%+) obtained directly from outlet gas.  相似文献   

2.
The mixed matrix membranes (MMMs) consisting zeolitic-imidazolate framework-8 (ZIF-8) nanoparticles in a polymer have been of considerable interest in separation applications. The fillers used are mostly synthesized using the solvothermal method. In this study, the ZIF-8 nanoparticles were synthesized using a solvent-less and salt-free mechanochemical method and were added to 6FDA-TrMPD polyimide to prepare MMMs. The single gas permeation of C3H6 and C3H8 through the MMMs was investigated. The C3H6 permeability and C3H6/C3H8 ideal selectivity of a 20 wt% mechano-synthesized ZIF-8/6FDA-TrMPD MMM were 70% and 32% higher than those of the neat polymer membrane at 0.1 MPa and 308 K, respectively. The C3H6/C3H8 separation performance of the mechano-synthesized ZIF-8 MMM was similar to that of the conventional solvothermal-synthesized ZIF-8 MMM. This separation performance was in good agreement with the Maxwell model. Temperature and pressure dependence analyses confirmed that the mechano-synthesized ZIF-8 nanoparticles acted as molecular sieves in the MMMs for the C3H6 and C3H8 permeation.  相似文献   

3.
Permeation properties of pure H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide (PEI) hollow‐fiber membranes were studied as a function of pressure and temperature. The PEI asymmetric hollow‐fiber membrane was spun from a N‐methyl‐2‐pyrrolidone/ethanol solvent system via a dry‐wet phase‐inversion method, with water as the external coagulant and 50 wt % ethanol in water as the internal coagulant. The prepared asymmetric membrane exhibited sufficiently high selectivity (H2/N2 selectivity >50 at 25°C). H2 permeation through the PEI hollow fiber was dominated by the solution‐diffusion mechanism in the nonporous part. For CH4 and N2, the transport mechanism for gas permeation was a combination of Knudsen flow and viscous flow in the porous part and solution diffusion in the nonporous part. In our analysis, operating pressure had little effect on the permeation of H2, CH4, and N2. For C2H6 and C3H8, however, capillary condensation may have occurred at higher pressures, resulting in an increase in gas permeability. As far as the effect of operating temperature was concerned, H2 permeability increased greatly with increasing temperature. Meanwhile, a slight permeability increment with increasing temperature was noted for N2 and CH4, whereas the permeability of C2H6 and C3H8 decreased with increasing temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 698–702, 2002  相似文献   

4.
The partial oxidation (POX) of natural gas to produce acetylene was studied using detailed chemistry simulation to determine the influences of adding H2, C2H6 and C3H8 to the CH4 feed. Four detailed chemistry mechanisms, codenamed GRI 3.0, GRI 486, Petersen, and Curran, for describing the POX of natural gas under fuel-rich conditions were evaluated by comparing calculated results with ignition delay time and homogeneous oxidation data. The Curran mechanism gave the best performance, and was further used to examine the influences brought about by changes in the natural gas composition due to the addition of H2, C2H6 and C3H8. The addition of H2, C2H6 and C3H8 reduced the consumption of natural gas per ton of acetylene produced, and would enhance the economy of the POX process and help use up excess H2, C2H6 and C3H8 from other processes in chemical plants. For natural gases that contain small amounts of higher hydrocarbons, the adding of H2, C2H6 and C3H8 significantly decreased the ignition delay time, and the residence time of the feed in the mixing zone has to be reduced when adding these species to avoid uncontrolled combustion.  相似文献   

5.
The development of ethane (C2H6)-selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared-layer metal-organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high-performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared-layer MOFs with various metal centers M and co-ligands L, M2(D-cam)4L2 (denoted M-cam-L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M-cam-L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni-cam-pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu-cam-dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu-cam-pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M-cam-pyz and M-cam-dabco materials. The synthesis route of the M-cam-L materials is easily scaled-up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.  相似文献   

6.
SAPO-34 hollow fiber zeolite membranes are successfully synthesized on α-Al2O3 hollow fiber ceramic substrates by secondary growth method, and used to separate H2 from a binary mixture (H2, C3H8) or ternary mixture (H2, C3H8, and C3H6) under a wide temperature range (25–600°C) with the aim of using them for propane dehydrogenation (PDH) reactions at high temperature. The results show excellent performance for H2/C3H8 and H2/ C3H8 & C3H6 separation, with high H2 permeance of 3.1 × 10−7 mol/m2/s/Pa and H2/C3H8 selectivity of 41 at 600°C. Additionally, the membrane shows stable performance for 140 hr of H2/C3H8 separation test at 600°C. The high performance of this membrane is mainly attributed to the thin (∼2 μm) zeolite layer and asymmetric-wall of the hollow fiber support. So far, this membrane offers the highest hydrogen permeation and selectivity for H2/C3H8 separation at high temperature (600°C) compared to those reported in literature.  相似文献   

7.
Selective catalytic reduction (SCR) of N2O with C2H6 took place effectively over Fe ion-exchanged BEA zeolite catalyst (Fe-BEA) even in the presence of excess oxygen. The mechanism in the SCR of N2O with C2H6 over Fe-BEA catalyst was studied by a transient response experiment and an in situ DRIFT spectroscopy. No oxidation of C2H6 by O2 took place below 350 °C (in C2H6/O2). In the N2O/C2H6/O2 system, however, it was found that the reaction of C2H6 with O2 was drastically enhanced by the presence of N2O even at low temperatures (200-300 °C). Therefore, it was concluded that N2O played an important role in the oxidation of C2H6 (i.e., activation of C2H6 at an initial step). On the basis of these findings, the mechanism in the SCR of N2O with C2H6 is discussed.  相似文献   

8.

In this investigation, a comparative study for a NO X storage catalytic system was performed focusing on the parameters that affect the reduction by using different reductants (H2, CO, C3H6 and C3H8) and different temperatures (350, 250 and 150 °C), for a Pt/BaO/Al2O3 catalyst. Transient experiments show that H2 and CO are highly efficient reductants compared to C3H6 which is somewhat less efficient. H2 shows a significant reduction effect at relatively low temperature (150 °C) but with a low storage capacity. We find that C3H8 does not show any NO X reduction ability for NO X stored in Pt/BaO/Al2O3 at any of the temperatures. The formation of ammonia and nitrous oxide is also discussed.

  相似文献   

9.
The influence of the preparation procedure of tungsten carbide on the mechanism of carburization is discussed. This work is focused on the reduction and the carburization of tungsten trioxide by a mixture of hydrocarbon and H2 to form WC. Temperature-programmed reaction spectra obtained with CH4, C2H6 and C2H4 have been measured. In presence of the CH4-H2 mixture, H2 is the reducing agent and the hydrocarbon is consumed for the carburization whereas C2H6 or C2H4 participates in the reduction of the tungsten oxide. The temperatures of reduction and carburization are lower by about 150 K using C2H6 or C2H4 instead of CH4. Such a decrease of the temperature of reduction of tungsten oxide is needed to avoid the formation of poorly reducible compounds that can occur during the preparation of supported tungsten carbide. Furthermore, the surface area of the resulting carbide is 25 m2/g with C2H6 and C2H4 and 10 m2/g with CH4. During the carburization, the deposit of excess carbon on the WC surface is larger with the C2 hydrocarbons than with CH4, but it protects the carbide and can be removed by hydrogen treatment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Ionic liquids (ILs) have been proposed as promising solvents for separating C2H2 and C2H4, but screening an industrially attractive IL with high capacity from numerous available ILs remains challenging. In this work, a rapid screening method based on COSMO‐RS was developed. We also present an efficient strategy to improve the C2H2 capacity in ILs together with adequate C2H2/C2H4 selectivity with the aid of COSMO‐RS. The essence of this strategy is to increase molecular free volume of ILs and simultaneously enhance hydrogen‐bond basicity of anions by introducing flexible and highly asymmetric structures, which is validated by a new class of tetraalkylphosphonium ILs featuring long‐chain carboxylate anions. At 298.1 K and 1 bar, the solubility of C2H2 in ILs reaches 0.476 mol/mol IL, very high for a physical absorption, with a selectivity of up to 21.4. The separation performance of tetraalkylphosphonium ILs to the mixture of C2H2/C2H4 was also evaluated. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2016–2027, 2015  相似文献   

11.
The reaction of [RhCl(PiPr3)2] ( 1 ) with 1,4-C6H4(C≡CH)2 at 0°C leads almost quantitatively to the formation of the bis(alkyne) complex [(PiPr3)2ClRh-(HC≡C6H4-C≡CH)RhCl(PiPr3)2] (2). At elevated temperatures (THF, 60°C) it rearranges to give the isomeric bis(vinylidene) complex [(PiPr3)2ClRh-(=C=CH-C6H4-CH=C=)RhCl(PiPr3)2] (3). A one-pot synthesis of 3 is also described. Treatment of either 2 or 3 with pyridine affords the bis(alkynyl)dihydrido compound [(PiPr3)2(py)Cl(H)Rh(-C≡C-C6H4-C≡C-)Rh(H)Cl(py)(PiPr3)2] ( 4 ) in which both metal centers are octahedrally coordinated. Whereas the reaction of 2 with NaC5H5 produces the complex CsH5(PiPr3)Rh(HC≡C-C6H4-C≡CH)Rh(PiPr3)C5H5 ( 7 ), the bis(vinyl-idene) isomer C5H5(PiPr3)Rh(=C=CH-C6H4-CH=C=)Rh(PiPr3)C5Hs ( 8 ) is obtained from 4 and NaC5H5. Electrophiles preferably attack the Rh=C bonds of 8 and thus on protonation with CF3CO2H the bis(vinyl) complex C5H5(PiPr3)(CF3CO2)-Rh(Z,Z-CH=CH-C6H4-CH=CH)Rh(O2CCF3)(PiPr3)C5Hs ( Z-9 ) is formed. In acetone solution, it rearranges to give the E isomer. Reaction of 8 with sulfur affords the bis(thioketene) complex C5H5(PiPr3)Rh(≡2-C,S; η2-C,S-S=C=CH-C6H4-CH=C=S)-Rh(PiPr3)C5H5 ( 12 ), for which only one diastereomer is observed. All attempts to prepare mononuclear rhodium compounds containing the diyne HC≡C-C6H4-G≡CH or the isomeric vinylidene: C=CH-C6H4-G≡CH as ligand failed.  相似文献   

12.
Biosensor detecting techniques have attracted much attention in the content determination of H2O2, which has been used illegally as a food additive. An electrochemical biosensing membrane for the detection of H2O2 was developed with C6‐OH of chitosan immobilized cyclodextrin derivates (6‐CD–CTS), which possessed a high cyclodextrin loading capacity (2.12 × 10?4 mol/g), as the carrier. The biosensor was prepared through the inclusion of ferrocene as the electron mediator in a hydrophobic cavity of cyclodextrin and crosslinking catalase (CAT) to 2‐NH2 of 6‐CD–CTS. The ferrocene‐included complex was evaluated by ultraviolet–visible spectrophotometry and thermogravimetric analysis. Its electrochemical behavior was also studied. The impact of the reaction conditions on the CAT immobilization capacity was evaluated. When previous membrane was used to detect the concentration of H2O2 (CH2O2), we found that the catalysis of CAT and the signal amplification of ferrocene had a major impact on the cyclic voltammograms. The optimal working pH of the modified electrode was 7.0. The peak current (I) had a linear relationship with the H2O2 concentration (CH2O2) in the range 1.0 × 10?4 to 1.0 × 10?3 mol/L. The linear regression equation was I = 0.00475CH2O2 ? 0.03025. The detection limit was 10?6 mol/L. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41499.  相似文献   

13.
Adsorption of CH4, C2H6 and C2H4, the feed and main products of oxidative coupling process of methane (OCM) has been studied on silicoalumina-phosphate molecular sieve (SAPO-34) in mild conditions. The experiments were conducted in a batch system based on volumetric adsorption measurement technique for determination equilibrium adsorption capacity in the absolute pressure range of 100–1000 kPa and at the isothermal temperatures of 303, 313 and 323 K. Various isotherm equations were fitted on the adsorption equilibrium data and the model parameters were predicted as a function of temperature. Isosteric heats of adsorption were determined using Clausius–Clapeyron equation at different surface coverage. Maximum capacity of SAPO-34 was observed at 303 K and 880–900 kPa equilibrium pressure with 1.25, 2.02 and 4.67 mmol/g adsorbed amount for methane, ethane and ethylene adsorption, respectively. The adsorption selectivity of ethane and ethylene against methane were determined and the appropriate potential of SAPO-34 was observed for separation of OCM products from methane. The isotherm models and enthalpy of adsorption can be efficiently used for the simulation of the adsorption process constructed at the downstream of the OCM process for separation of ethane and ethylene from methane.  相似文献   

14.
Reduction of surface nitrates with C3H6 on a Pt/Al2O3 catalyst was investigated using diffuse reflectance infrared spectroscopy (DRIFTS) and a reactor system designed for monolith-supported catalysts. C3H6 oxidation was inhibited by the presence of NO, and vice versa, and data indicate that adsorbed NOX reacted with gas phase C3H6. DRIFTS results confirm reaction between C3H6 and surface nitrates with linear nitrites as the reaction products. Data show that Pt is required for this reaction, which suggests the nitrates in proximity to the Pt particles are affected/relevant.  相似文献   

15.
16.
Mixed-matrix membranes (MMMs), judiciously combining processability of polymer and remarkable separation performance of nanofillers, have been extensive pursuits for molecular separation process. Permeability matching between filler and polymer is one of the necessary requisites to desirable mixed-matrix effect. Considering the superior molecular sieving effect of UTSA-280 metal-organic frameworks on C2H4 and C2H6, here, we report two types of UTSA-280/6FDA-polyimide MMMs toward C2H4/C2H6 separation. The molecular sieving effect of UTSA-280 endowed 6FDA-DAM:DABA(3:2) membrane with simultaneous improvements in C2H4 permeability and C2H4/C2H6 selectivity. Optimally, when the filler reached 21.80 wt%, C2H4 permeability and C2H4/C2H6 selectivity was increased to 6.49 Barrer (by 15%) and 4.94 (by 32%), respectively. On the contrary, UTSA-280/6FDA-DAM MMMs showed undesirable mixed-matrix effect that C2H4 permeability decreased meanwhile C2H4/C2H6 selectivity nearly kept at polymeric pristine membrane level. It was found that permeability matching between two phases was responsible to these opposite mixed-matrix effects. More specifically, UTSA-280 had a relatively low gas permeability so that it required a less permeable polymeric matrix like 6FDA-DAM:DABA(3:2) to exert its molecular sieving effect. Furthermore, the optimal-matching 6FDA-matrix in permeability with UTSA-280 fillers was predicted by theoretical model. This work not only reports improving C2H4/C2H6 separation performance via mixed-matrix formulation, but also emphasizes the importance of permeability matching between polymer and filler to realize the mixed-matrix effect.  相似文献   

17.
《分离科学与技术》2012,47(5):592-603
In this paper, a new polydimethylsiloxane (PDMS) membrane was synthesized and its ability for separation of heavier gases from lighter ones was examined. Sorption, diffusion, and permeation of H2, N2, O2, CH4, CO2, and C3H8 in the synthesized membrane were investigated as a function of pressure at 35°C. PDMS was confirmed to be more permeable to more condensable gases such as C3H8. This result was attributed to very high solubility of larger gas molecules in hydrocarbon?based PDMS in spite of their low diffusion coefficients relative to small molecules. The synthesized membrane showed much better gas permeation performance than others reported in the literature. Increasing upstream pressure increased solubility, permeability and diffusion coefficients of C3H8, while these values decreased slightly or stayed constant for other gases. Local effective diffusion coefficient of C3H8 and CO2 increased with increasing penetrant concentration which indicated plasticization effect of these gases over the range of penetrant concentration studied. C3H8/gas solubility, diffusivity and overall selectivities also increased with increasing feed pressure. Ideal selectivity values of 4, 13, 18, 20, and 36 for C3H8 over CO2, CH4, H2, O2, and N2, respectively, at upstream pressure of 7 atm, confirmed the outstanding separation performance of the synthesized mebrane.  相似文献   

18.
Reaction kinetics studies of C3H6 oxidation over Pt/Al2O3 and Pt/SiO2 catalysts were characterized using temperature-programmed oxidation with different oxidants: O2, NO2 and surface nitrates. Activation energies and conversion performance were compared in order to determine which hydrocarbon oxidation reaction pathway(s) is relevant in diesel exhaust gas aftertreatment applications. NO x adsorption did not occur on the SiO2 surface so the reaction between C3H6 and NO2 could be isolated, i.e. no nitrate effect would complicate the analysis and their significance could be decoupled. These results were then compared with Pt/Al2O3 where surface nitrates did form upon exposure to NO x . The onset of C3H6 oxidation was observed at a lower temperature with O2 than with NO2, but the activation energy was lower with NO2. This apparent discrepancy is related to the different oxidant concentrations used and the different adsorption pathways. The results indicate that hydrocarbons must be activated first for oxidation to begin, for either NO2 or O2. In analyzing the reaction between C3H6 and nitrates, the reaction did not occur until NO x started to desorb from the catalyst at higher temperatures, i.e. when nitrates became unstable and decomposed, thus providing a readily available oxidant source. However, when O2 was added to the nitrate/C3H6 system, the reaction began at even lower temperature than with just C3H6 and O2. Nitrate consumption was also observed once oxidation began. The presence of the combination of nitrates and O2 resulted in a lower C3H6 oxidation activation energy.  相似文献   

19.
The purification of propene from the propene/propane binary mixture is one of the most important and challenging separation processes in the chemical industry. In this study, a cobalt-based pillar-layer metal–organic framework, Co(AIP)(BPY)0.5, was synthesized. It exhibited excellent water and moisture stability and efficient C3H6/C3H8 separation performance. At 298 K and 100 kPa, the adsorption capacity of C3H6 was 1.99 mmol/g and the IAST adsorption selectivity was 21, which has exceeded most investigated MOFs adsorbents. The cyclic breakthrough experiments of C3H6/C3H8 binary mixture confirmed its efficient dynamic separation property and excellent recyclability. The molecular simulation showed that the C3H8 molecules with multiple binding sites (C─H) were restricted at the middle of the one-dimensional channel. Compared with C3H6, the large steric hindrance of C3H8 caused lower diffusion rate (with a C3H6/C3H8 kinetic selectivity of 29.7, at 303 K) in the narrow pore system of 1 , which has been confirmed by the kinetic adsorption experiments.  相似文献   

20.
The rates and product selectivities of the C3H6-NO-O2 and NO-H2 reactions over a Pt/Al2O3 catalyst, and of the straight, NO decomposition reaction over the reduced catalyst have been compared at 240C. The rate of NO decomposition over the reduced catalyst is seven times greater than the rate of NO decomposition in the C3H6-NO-O2 reaction. This is consistent with a mechanism in which NO decomposition occurs on Pt sites reduced by the hydrocarbon, provided only that at steady state in the lean NO x reaction about 14% of the Pt sites are in the reduced form. However, the (extrapolated) rate of the NO-H2 reaction at 240C is about 104 times faster than the rate of the NO decomposition reaction thus raising the possibility that NO decomposition in the former reaction is assisted by Hads. It is suggested that adsorbate-assisted NO decomposition in the C3H6-NO-O2 reaction could be very important. This would mean that the proportion of reduced Pt sites required in the steady state would be extremely small. The NO decomposition and the NO-H2 reactions produce no N2O, unlike the C3H6-NO-O2 reaction, suggesting that adsorbed NO is completely dissociated in the first two cases, but only partially dissociated in the latter case. It is possible that some of the associatively adsorbed NO present during the C3H6-NO-O2 reaction may be adsorbed on oxidised Pt sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号