首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel design of a compact rapid pressure swing adsorption system consisting of a single adsorber enclosed inside a product storage tank is proposed for application as a medical oxygen concentrator (MOC). A self‐contained test unit for the process is constructed which is capable of directly and continuously producing 1–3 sl/m of 90% O2 from compressed air. Pelletized LiLSX zeolite is used as the air separation adsorbent. Steady state process performance data [bed size factor (BSF) and O2 recovery (R) as functions of total cycle time (tc)], as well as transient, cyclic, adsorber pressure, and temperature profiles are presented. A four‐step Skarstrom‐like pressure swing adsorption cycle was used. Two options for column pressurization, (a) using compressed feed air cocurrently or (b) using a part of the oxygen‐enriched product gas counter‐currently were evaluated. Option (b) exhibited superior performance. The optimum total cycle time for option (b) was 5–6 s where the BSF was lowest (~45 kgs/TPD O2) and the corresponding R was ~29.3%. These numbers indicate that the adsorbent inventory of a MOC can be potentially reduced by a factor of three while offering a ~10–20% higher O2 recovery compared to a typical commercial unit. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3330–3335, 2014  相似文献   

2.
《分离科学与技术》2012,47(10):1447-1452
The performances of a novel rapid pressure swing adsorption system for continuous production of ? 90% O2 from a compressed air feed were experimentally studied using two different samples of pelletized LiLSX zeolite. Bed size factor (BSF) and O2 recovery (R) were compared as functions of total process cycle times. The optimum performance by the samples differed substantially—one exhibiting ? 30% smaller BSF and ? 6% higher R than the other, even though the adsorption isotherms and column dynamics for the pure gases were nearly identical. Column pressure drop during the desorption step was the cause.  相似文献   

3.
A detailed numerical study of the individual and cumulative effects of various mass, heat, and momentum transfer resistances, which are generally present inside a practical adiabatic adsorber, on the overall separation performance of a rapid pressure swing adsorption (RPSA) process is performed for production of nearly pure helium gas from an equimolar binary (N2 +He) gas mixture using 5 A zeolite. Column bed size factor (BSF) and helium recovery (R) from the feed gas are used to characterize the separation performances. All practical impediments like column pressure drop, finite gas‐solid mass and heat transfer resistances, mass and heat axial dispersions in the gas phase, and heats of ad(de)sorption causing nonisothermal operation have detrimental impacts on the overall process performance, which are significantly accentuated when the total cycle time of a RPSA process is small and the product gas helium purity is high. These impediments also prohibit indefinite lowering of BSF (desired performance) by decreasing process cycle time alone. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2008–2015, 2015  相似文献   

4.
祝显强  刘应书  杨雄  刘文海  李永玲 《化工学报》2016,67(10):4264-4272
针对快速变压吸附制氧浓度和回收率低问题,提出了用于提高产氧浓度和回收率的中间气两步充压的快速真空变压吸附流程,并对该流程进行了研究。结果表明:在快速真空变压吸附制氧过程中,中间气先在出气端充压可以有效提高产氧浓度,之后再在进气端充压可提高氧气回收率。出气端充压前中间气压力及氧浓度和进气端充压后床层压力是影响产氧浓度和回收率提高的关键参数。当吸附和解吸压力分别为240、60 kPa时,循环氧气回收率为34.57%,且每天产单位吨氧需吸附剂量为61.18 kg·TPD-1。  相似文献   

5.
《分离科学与技术》2012,47(13):2569-2591
Abstract

The most common application of adsorption is via pressure swing adsorption. In this type of design, the feed and regeneration temperatures are kept approximately equal, whereas the feed pressure is higher than the regeneration pressure. By exploiting the difference in the amount adsorbed at a higher pressure to the amount adsorbed at a lower pressure, a working capacity is realized. Therefore, by examining the expected (ideal) working capacity of an adsorbent, a performance characteristic can be analyzed for a pressure swing adsorption process (PSA). For this work, feed pressures up to 2.0 atm CO2 and feed temperatures from 20°C to 200°C were investigated. These limits were chosen due to the nature of the target process: CO2 removal from flue gas.

Carbon dioxide adsorption isotherms were determined in a constant volume system at 23°C, 45°C, 65°C, 104°C, 146°C, and 198°C, for pressures between 0.001 and 2.5 atm CO2 with NaY zeolite. These data were fit with the temperature dependent form of the Toth isotherm. Henry's Law constants and the heat of adsorption at the limit of zero coverage were also determined using the concentration pulse method. Comparison of the Henry's Law constants derived from the Toth isotherm, and those obtained with the concentration pulse method provided excellent agreement.

By using the Toth isotherm, expected working capacity contour plots were constructed for PSA (Pressure Swing Adsorption), TSA (Temperature Swing Adsorption), and PTSA (Pressure Temperature Swing Adsorption) cycles. The largest expected working capacities were obtained when the bed was operated under a high‐pressure gradient PSA cycle, or a high thermal and pressure gradient PTSA cycle. The results also showed that certain TSA and PSA cycle conditions would result with higher expected working capacities as the feed temperature increases.  相似文献   

6.
The separation of methane (CH4) and nitrogen (N2) is a significant challenge to the enrichment and utilization of low concentration CH4 due to the similarity in the physical and chemical properties of the two molecules. In this work, we investigated the separation of CH4 from N2 using 100 kg of a new ionic liquidic zeolite (ILZ) material in a 6-bed pilot-scale pressure swing adsorption process. Feed gases with CH4 concentrations of 5.0% and 16.1% were upgraded to 11.5% and 34.6%, respectively, with CH4 recoveries higher than 80%. The pilot test results were used to anchor a numerical model that then allowed the efficient investigation of multiple operational parameters including desorption pressure and feed gas flow rates. The numerical model produced CH4 concentrations for both product streams consistent with those measured in the pilot experiments, with root mean square deviations below 2%. The modeling results revealed that sufficiently low desorption pressures can unexpectedly lead to lower heavy product purities under limited feed gas flow conditions. Furthermore, the optimum feed gas flow rate under which maximum heavy product purity is achieved increases with lower desorption pressure. The maximum CH4 concentrations increased from 31.8% to 41.5%, as desorption pressures decreased from 22.8 to 12.2 kPa for optimum feed flow rates between 78.2 and 105.5 mol/h. We also demonstrate a method of process optimization based on the bed capacity ratio, ℂ, which provides a scale-independent measure of the degree to which the column is being used effectively. By varying feed flow rate and/or desorption pressure, ℂ values between 0.2 and 0.8 were explored, with maxima in the combined separation performance metric (methane recovery) × (methane purity) occurring for values of ℂ in the range 0.29–0.36. This separation performance optimization by adjusting ℂ provides an effective strategy for integrating and understanding the impact of multiple operating parameters.  相似文献   

7.
通过对微型制氧流程的实验研究和分析,确定了单节流小流量反吹和均压工艺的最佳实验参数,在保证产氧浓度和氧气最大回收率的条件下,该工艺流程吸附压力最低。结果表明:小流量反吹工艺可以提高产品气中氧气浓度(体积分数),吸附塔出口端单向阀可以有效降低吸附压力;双节流反吹工艺虽然可以提高产品气中氧气浓度,但节流孔径限制了产品氧气输出,导致吸附压力升高;单节流小流量反吹工艺和均压工艺中均压时间与瞬洗时间均存在最佳值。  相似文献   

8.
研究了气源温度和解吸条件对制氧效果的影响,结果表明:细长解吸管路会导致吸附塔内氧浓度波前沿在吸附周期内极易穿透床层,在产氧期及间歇期都会有低浓度氧流入储氧罐,造成氧浓度和流量下降;较高的气源温度有利于分子筛解吸再生,在15~65 ℃内,平均每升高10 ℃,产氧体积分数可以提高1.2%。  相似文献   

9.
真空变压吸附沼气净化过程的仿真研究   总被引:5,自引:4,他引:1       下载免费PDF全文
张湜  陈文亮  李晖  张亚兵  韦萍 《化工学报》2013,64(4):1300-1305
真空变压吸附(VPSA)是一种气体分离技术,该技术运用在沼气净化过程还存在较多的问题,针对该过程吸附塔出口浓度出现的浓度峰问题,运用线性推动力模型(LDF)与Langmuir等温方程对其建立了数学模型,模拟分析了缓冲罐中杂质浓度对吸附步骤出口浓度的影响。结果表明:相同吸附时间下,随着吸附压的降低,二均降结束时会有更多的杂质进入缓冲罐,而缓冲罐中的杂质又会通过一均升步骤进入吸附塔,最终使得吸附步骤出口浓度曲线出现波峰,从而影响了吸附塔出口CH4含量。通过模型的分析,吸附时间随着吸附压不断降低而缩短,可以有效控制杂质进入缓冲罐,从而使吸附塔出口CH4含量提高。  相似文献   

10.
《分离科学与技术》2012,47(14):2841-2869
Abstract

Olive mill wastewater (OMWW) is considered as a challenge for environmental scientists. It is characterized by high values of total organics expressed by chemical oxygen demand (COD), biological oxygen demand (BOD5), and phenols. In this paper, an integrated process of OMWW treatment, which includes lime precipitation, filtration using a novel technology of a membrane filter press (a pilot scale) and a post‐treatment using activated carbon adsorption for the filtrate, was studied. Lime precipitation has removed ~71% of phenols, ~39% of COD, and ~88% of BOD5 with a rise in the total suspended solids (TSS) from 31 kg/m3 (before precipitation) to 69 kg/m3 (after precipitation).

The filtration and dewatering operation cycle is approximately 125–150 min. Filtration was examined at different feed pressure (3–5 bar), different slurry concentrations (23–69 kg/m3, dry weight), and filter aid pre‐coat with different additions of diatomite body feed. Specific cake resistance, α, was found to increase with the increase in feed pressure and to decrease with diatomite pre‐coating and slurry concentration increase. However, a further decrease in α values was obtained using diatomite body feed. Cake dewatering, via membrane squeezing, was applied using hot water (65°C) and cake moisture was dropped from ~64% before squeezing to 35% after squeezing. Twenty minutes were found enough for that stage to be accomplished. With vacuum application, for 30 min, over the hot cakes, cake moisture decreased to ~20% for cakes with an average thickness of 1 cm. The produced cakes lose more moisture by storing in open air (on the shelf), reaching an equilibrium value of 9% in 2–3 days. Calorific value of produced cake is 15.71 MJ/kg, suggesting strongly its use as an energy source. Activated carbon was used as an efficient sorbent for removing the remaining phenols and total organics from the filtrate as a post‐treatment showing promising results. Maximum removal of phenols and total organics, by lime precipitation and filtrate post‐treatment using activated carbon adsorption, reached ~99.7% and ~80%, respectively.

A process flowsheet and preliminary cost estimates are presented and compared with other processes. The thermal energy produced by the burning of the produced cakes would be enough for the thermal needs of both the olive mill plant and the proposed treatment process.  相似文献   

11.
《分离科学与技术》2012,47(10):1522-1530
Breakthrough curves, cycle mass balances, and cycle bed productivities (mg H2 per gram of adsorbent) on three dual adsorbent amounts (g) of 2,892, 1,963, and 1,013 respectively each filling 200 cm, 135 cm, and 70 cm of a 5.0 cm internal diameter stainless steel pipe were performed. The approximate optimum (sludge pyrolysis) synthesis gas with composition in volume % of 45% H2/35% CO/20% CH4 was used as the feed gas with molecular sieve 5 Å and activated carbon as adsorbents. Impurity breakthroughs occurred at ~14.9, 12.3, and 5.0 minutes respectively for % cycle recoveries of 72.2, 65.0, and 60.2 using 2,892, 1,962, and 1,013 g of adsorbent respectively. Our results indicated that basing % recycle recovery on cycle bed productivity can enable efficient hydrogen recovery with savings on adsorbent amount. An optimum cycle bed productivity of 2.3 mg H2/g of adsorbent corresponded to a cycle recovery of 66.2% for 2,300 g of adsorbent used. Only 1.7 mg H2/g of adsorbent was obtained for a cycle recovery of 72.2% requiring up to 2,800 g of adsorbent. This makes economic sense in the pressure swing adsorption separation of hydrogen from traditionally low hydrogen concentration biomass sources.  相似文献   

12.
The effects of a poorly packed bed on the pressure vacuum swing adsorption (PVSA) process were investigated experimentally and theoretically by a five-step two-bed PVSA system. At first, the adsorption dynamics of a zeolite LiX bed for air separation (78 mol% N2, 21 mol% O2 and 1 mol% Ar) was studied at various adsorption pressures and flow rates. In breakthrough results, the effect of adsorption pressure on variations in bed temperature was greater than that of the feed flow rate. A combined roll-up of Ar and O2 by N2 propagation was observed and the roll-up plateau reached about 4 mol%. The fluid dynamic behavior of the poorly packed bed was simulated at each step in the PVSA process. The pressure and velocity profiles in the non-isobaric steps were clearly different from those of a normally packed bed. The two-bed PVSA process using one poorly packed bed with additional 1% void volume in feed end of bed could produce a purity of 92.3mol% O2 from air, which was almost 1% purity lower than the PVSA with normal two beds. Even small asymmetry between beds, due to poor bed packing, could greatly reduce the product purity in the PVSA process.  相似文献   

13.
This work aims at developing an efficient and feasible adsorption-based separation process for the separation of vinyl chloride and nitrogen, on activated carbon, by employing a multitubular packed bed geometry, with adsorbent material inside the tubes. Using this geometry, a 2-dimensional mathematical model of a temperature pressure swing adsorption process was used to developed a 6-step three multitubular adsorbers system capable of separating and purifying an industrial scale gas stream of a 40:60% (v/v) vinyl chloride/nitrogen mixture into a 95% (v/v) vinyl chloride stream and a nitrogen stream with a vinyl chloride limit concentration of 8 ppm (w/w). The process reported energy consumption of 4.88 × 106 J/kgVCM and recovery capacity of 24.35 kgVCM/(m3unit h). The multitubular geometry enabled the use of lower adsorbent loads, shorter cycle times, and lower regeneration temperatures. An equivalent 1-dimensional model has also shown to satisfactorily estimate the performance of the current equipment.  相似文献   

14.
Yb2Si2O7/Si bilayer environmental barrier coatings (EBCs) on SiC ceramic substrate were produced by low pressure plasma spray (LPPS) process. Phase composition, microstructure, and thermal durability of LPPS Yb2Si2O7/Si coating were investigated. XRD analysis indicated that the coating is mainly composed of Yb2Si2O7 with ~15.5v% Yb2SiO5 phases. The LPPS EBCs have a dense microstructure with porosity less than 4%. Adhesion strength measurement indicated the LPPS EBCs have an average adhesion strength of 29.1 ± 0.8 MPa. Furnace cycle test (FCT) on the coatings in air at 1316°C was performed and the test ran for 900 cycles and there was no coating spallation/failure for LPPS Yb2Si2O7/Si EBCs. The FCT results demonstrated the excellent thermal cycle durability of LPPS EBCs. Oxidation kinetics investigation of LPPS EBCs in flowing 90% H2O (g)+10% air at 1316°C showed that the thermally grown oxide (TGO) growth rate is close to the oxidation rate of pure Si in dry air and is significantly lower than that in water vapor environment. The LPPS process is promising in making highly durable Yb2Si2O7-based dense EBCs by impeding diffusion and ingression of water vapor/O2.  相似文献   

15.
The simultaneous removal and concentration of carbon dioxide present in ambient air were carried out by a dual refluxed Pressure Swing Adsorption (PSA) process with intermediate feed inlet position. The feed inlet position divides each column into rectifying and stripping sections from which enriched and lean gases can be simultaneously produced. A simple isothermal model with negligible axial dispersion and pressure drops through the PSA beds was developed to investigate the effects of various combinations of the operating variables and to analyze semi-quantitatively the effects of the main characteristic parameters such as the dimensionless feed inlet position (ZR/LT) and the stripping-reflux ratio (Rr). A good agreement between the model prediction and the experimental results was obtained. Moreover, an optimum feed inlet position was found and it corresponded to a position where the carbon dioxide mole ratio in the feed flux and that in the upstream flux leaving the stripping section were equal. The carbon dioxide mole ratio in the enriched product (YE) as well as that in the lean product (YL) were strongly dependent on the ratio of feed/enriched product flow rates (QF/QE) and the ratio of feed/lean product flow rates (QF/QL). Although the pressure ratio (Pa/Pd) was crucially important for the separation performance, a smaller value of Rr was sufficient to reach a performance which is unattainable in conventional PSA processes.  相似文献   

16.
Using the standard deviation of pressure fluctuations to find the minimum fluidization velocity, Umf, avoids the need to de-fluidize the bed so Umf, can be found for operational bubbling fluidized beds without disrupting the process provided only that the superficial velocity may be altered and that the bed remains in the bubbling fluidized state. This investigation has concentrated on two distinct aspects of the pressure fluctuation method for Umf determination: (1) the minimum number of pressure measurements required to obtain reliable estimates of standard deviation has been identified as about 10000 and (2) pressure fluctuation measurements in the plenum below the gas distributor are suitable for Umf determination so the problems of pressure probe clogging and erosion by bed particles may be avoided.  相似文献   

17.
Polypropylene (PP) samples stabilized by a hindered phenol (Irganox 1010) were submitted to thermal ageing at 80°C in air at atmospheric pressure or in pure oxygen at 5.0 MPa pressure. Both the polymer oxidation and the stabilizer consumption were monitored by Infrared spectrometry and thermal analysis. The stabilizer efficiency, as assessed by the ratio induction time/stabilizer concentration is almost constant at atmospheric pressure even when the stabilizer concentration is higher than its solubility limit in PP (0.4% or 24 × 10?3 mol L?1). In contrast, at high pressure, the efficiency decreases almost hyperbolically with the stabilizer concentration when this latter is higher than 6.0 × 10?3 mol L?1. The results indicate the existence of a direct phenol‐oxygen reaction negligible at low oxygen pressure but significant at 5.0 MPa pressure. The reality of this reaction has been proved on the basis of a study of the thermal oxidation of a phenol solution in a nonoxidizable solvent. A kinetic model of PP oxidation in which stabilization involves three reactions has been proposed. It simulates correctly the effect of oxygen pressure and stabilizer concentration on carbonyl build‐up and stabilizer consumption. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Oxygen sorption on perovskite-type oxides can be advantageously used for air separation at high temperature. The large heat of oxygen sorption on these oxide sorbents presents a major challenge for the heat management of the high sorption separation process in practical applications. This paper reports a method to minimize the heat effects by taking advantage of an endothermic process of oxygen vacancy order-disorder phase transition accompanying the oxygen sorption process on perovskite-type oxide sorbents. The oxygen sorption isotherms, phase diagram, exothermic heat of oxygen sorption, and endothermic heat of the order-disorder phase transition for La0.1Sr0.9Co0.9Fe0.1O3-δ were measured by simultaneous TGA/DSC and XRD. The conditions for zero apparent heat of sorption are determined. If the oxygen partial pressure change and adsorption temperature are controlled such that they give an oxygen adsorption amount, which is numerically equal to the ratio of heat of phase transition to heat of oxygen sorption, the net heat released from the oxygen sorption step can be minimized or controlled to be negligible. This strategy for heat effect minimization is demonstrated with the results of TGA/DSC measurements at different operating conditions and air separation by a fixed-bed packed with the perovskite-type oxide sorbent.  相似文献   

19.
压力对微型变压吸附制氧的影响   总被引:2,自引:0,他引:2  
对微型变压吸附制氧系统的吸附器进出口和储气罐内的压力进行了实验研究。通过对压力曲线的分析,可以将无均压流程的吸附循环划分为升压吸附、卸压解吸和反吹清洗3个阶段,将有均压流程的吸附循环划分为均压升压、升压吸附、均压降压、卸压解吸和反吹清洗5个阶段;并对均压步骤、均压时间、反吹阻力等参数对压力曲线的影响进行了分析。  相似文献   

20.
《分离科学与技术》2012,47(11):2297-2323
Abstract

In Alcanena (Portugal) the waste water treatment plant (WWTP) receives tannery waste, after a pretreatment for sulphides and the tanning exhaust baths have been sent to a recovery unit and the municipal waste water from Alcanena residential area. Physical, chemical, and biological treatment processes are involved, and the end products are sludge of ~71% moisture containing mainly organic matter, sulfides, iron, chromium, and other metals. The sludge is dumped, after stabilization, in a specially designed hazardous waste landfill.

In this study, tannery mixed sludge (from chemical and biological treatments) was leached and filtered. Leaching was carried out using sulfuric acid (pH 0.5) to release residual sulfides and metals from the slurry. Hydrogen sulfide (H2S) was flushed out into an oxidation trap (hypochlorite/alkaline tank) in which H2S transforms to soluble sulfate. The acidified sludge was fed into a membrane filter press where it was filtered, acid‐washed, water–washed, membrane‐squeezed, and vacuum‐dried reaching lower moisture levels (20–30%). The process cycle is approximately 101–137 min in our experiments; however, from this work, a cycle of 90 min to produce cakes with 0.9 cm thickness in the industrial scale through cutting some operational time, reaching final moisture of ~20% at the end of the dewatering cycle, can be estimated. Filtration was carried out at different feed pressure (3–5 bar) with and without diatomite precoating. The effect of different amounts of diatomite body‐feed was studied. Specific cake resistance, α, was found to increase with the increase in feed pressure and to decrease with diatomite precoating and the increased amounts of diatomite body feed. Cake washing was accomplished using 0.05 M H2SO4 (acid washing), to remove residual metals, followed by water washing, to remove cake acidity. Cake dewatering via membrane squeezing was applied using hot water (65°C), and cake moisture was dropped from ~71% before squeezing to 42% after squeezing. With vacuum application over the hot cakes, for 30 min, cake moisture decreased to ~20% for cakes with an average thickness of 0.9 cm. Cake chemical analysis showed chromium levels lower than 1000 mg/kg (the maximum Cr concentration allowed by the Portuguese legislation in a solid residue for use in agricultural soil). In addition, produced cake (without diatomite body feed) has a calorific value of 11,000 kJ/kg and accordingly it can be used as a source of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号