首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoplastic foaming within a mold cavity was visualized as it was conducted in an 85‐ton core‐back injection‐molding machine. The core‐back molding process moved a section of the mold just after injecting a molten polymer into the cavity, quickly reducing the pressure to enhance the bubble nucleation. The foaming behavior during core‐back was observed directly through the glass windows of the mold. In the experiments, impact copolymer polypropylene was foamed with carbon dioxide. The effects of the gas concentration and the core‐back rate on bubble nucleation and growth were investigated. It was experimentally confirmed that the bubbles disappeared when the cavity was fully packed and that bubble nucleation occurred when the mold plate was moved and the cavity pressure dropped. Faster core‐back rates and higher gas concentrations increased the number of bubbles while decreasing their size. To analyze the experimental results, a bubble nucleation and growth model was employed that was based on batch foaming. The numerical results were a reasonable representation of the experiments, and this study demonstrated the applicability of the conventional free foaming model to the industrial core‐back molding process. Many aspects of the foaming in the core‐back molding aresimilar to the behaviors observed by batch foaming. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
Microllular plastics are cellular polymers characterized by cell densities greater than 109 cells/cm3 and cells smaller than 10 μm. One of the critical steps in the continuous production of microcellular plastics is the promotion of high cell nucleation rates in a flowing polymer matrix. These high nucleation rates can be achieved by first forming a polymer/gas solution followed by rapidly decreasing the solubility of gas in the polymer. Since, in the processing range of interest, the gas solubility in the polymer decreases as the pressure decreases, a rapid pressure drop element, consisting of a nozzle, has been employed as a continuous microcellular nucleation device. In this paper, the effects of the pressure drop rate on the nucleation of cells and the cell density are discussed. The experimental results indicate that both the magnitude and the cell density are discussed. The experimental results indicate that both the magnitude and the rate of pressure drop play a strong role in microcellular processing. The pressure phenomenon affects the thermodynamic instability induced in the polymer/gas solution and the competition between cell nucleation and growth.  相似文献   

3.
The initial fluidization characteristics of gas‐liquid‐solid minifluidized beds (MFBs) were experimentally investigated based on the analyses of bed pressure drop and visual observations. The results show that ULmf in 3–5 mm MFBs can not be determined due to the extensive pressure drop fluctuations resulting from complex bubble behavior. For 8–10 mm MFBs, ULmf can be confirmed from both datum analyses of pressure drop and Hurst exponent at low superficial gas velocity. But at high superficial gas velocity, ULmf was not obtained because the turning point at which the flow regime changes from the packed bed to the fluidized bed disappeared, and the bed was in a half fluidization state. Complex bubble growth behavior resulting from the effect of properties of gas‐liquid mixture and bed walls plays an important role in the fluidization of solid particles and leads to the reduction of ULmf. An empirical correlation was suggested to predict ULmf in MFBs. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1940–1957, 2016  相似文献   

4.
A gas‐solid‐liquid three‐phase model for the simulation of fiber‐reinforced composites mold‐filling with phase change is established. The influence of fluid flow on the fibers is described by Newton's law of motion, and the influence of fibers on fluid flow is described by the momentum exchange source term in the model. A revised enthalpy method that can be used for both the melt and air in the mold cavity is proposed to describe the phase change during the mold‐filling. The finite‐volume method on a non‐staggered grid coupled with a level set method for viscoelastic‐Newtonian fluid flow is used to solve the model. The “frozen skin” layers are simulated successfully. Information regarding the fiber transformation and orientation is obtained in the mold‐filling process. The results show that fibers in the cavity are divided into five layers during the mold‐filling process, which is in accordance with experimental studies. Fibers have disturbance on these physical quantities, and the disturbance increases as the slenderness ratio increases. During mold‐filling process with two injection inlets, fiber orientation around the weld line area is in accordance with the experimental results. At the same time, single fiber's trajectory in the cavity, and physical quantities such as velocity, pressure, temperature, and stresses distributions in the cavity at end of mold‐filling process are also obtained. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42881.  相似文献   

5.
A batchwise process for the production of microcellular plastics was studied in the polystyrene–nitrogen system. The effects of saturation temperature, saturation pressure, and late‐ and quick‐heating on the microcellular structure were investigated by considering the solubility of the gas in the polymer. It was found that the mean cell diameter was reduced and the cell number density increased with increase in the gas solubility. Variation in the saturation temperature showed that the cell number density had a minimum and the mean cell diameter had a maximum at about 350 K, which was related to the minimum solubility of nitrogen in polystyrene. The long heating time at 393 K of a solution saturated under 25 MPa increased the cell diameter, reduced the cell number density, and gave a maximum volume expansion ratio at about 300 s. Further heating caused the cell size and volume expansion ratio to be decreased, which might be caused by diffusion of the gas out of the polymer sample. The effect of the saturation temperature under high saturation pressure on the cell number density was qualitatively well predicted by the nucleation theory. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2383–2395, 2000  相似文献   

6.
An experimental study was carried out to gain a better understanding of the dynamic behavior of gas bubbles during the structural foam injection molding operation. For the study, a rectangular mold cavity with glass windows on both sides was constructed, which permitted us to record on a movie film the dynamic behavior of gas bubbles in the mold cavity as a molten polymer containing inert gas was injected into it. The mold was designed so that either isothermal or nonisothermal injection molding could be carried out. Materials used were polystyrene, high-density polyethylene, and polycarbonate. As chemical blowing agents, sodium bicarbonate (which generates carbon dioxide), a proprietary hydrazide and 5-phenyl tetrazole, both generating nitrogen, were used. Injection pressure, injection melt temperature, and mold temperature were varied to investigate the kinetics of bubble growth (and collapse) during the foam injection molding operation. It was found that the processing variables (e.g., the mold temperature, the injection pressure, the concentration of blowing agent) have a profound influence on the nucleation and growth rates of gas bubbles during mold filling. Some specific observations made from the present study are as follows: an increase in melt temperature, blowing agent concentration, and mold temperature brings about an increase in bubble growth but more non-uniform cell size and its distribution, whereas an increase in injection pressure (and hence injection speed) brings about a decrease in bubble growth but more uniform cell size and its distribution. Whereas almost all the theoretical studies published in the literature deal with the growth (or collapse) of a stationary single spherical gas bubble under isothermal conditions, in structural foam injection molding the shape of the bubble is not spherical because the fluid is in motion during mold filling. Moreover, a temperature gradient exists in the mold cavity and the cooling subsequent to mold filling influences bubble growth significantly. It is suggested that theoretical study be carried out on bubble growth in an imposed shear field under nonisothermal conditions.  相似文献   

7.
This work studies the flow behavior of a developing two‐phase gas‐polymer suspension during injection into the instrumented mold cavity of an injection molding machine. In the experiments, blowing agent type and concentration were varied along with processing conditions, to generate controlled cell structures in two different polymers, low density polyethylene and thermoplastic polyolefin. Experimental results indicate that the rheological properties of two phase gas‐polymer suspensions were sensitive to shear rate, blowing agent concentration, melt temperature, and mold temperature. The viscosity of all gas‐polymer suspensions revealed a reduction compared with neat polymer melt in the presence of gas bubbles, because of the reduced volume fraction of polymer matrix. A two‐phase rheological model has been used for fitting with our experimental results for estimating the shear viscosity of two‐phase flow in the mold cavity of the injection molding machine. POLYM. ENG. SCI., 47:522–529, 2007. © 2007 Society of Plastics Engineers.  相似文献   

8.
The dimensional variation of an injection‐molded, semicrystalline polymer part is larger than the variation of an amorphous polymer part because the shrinkage of a crystalline polymer is generally greater than the shrinkage of an amorphous one. We investigated the warpage of film‐insert‐molded (FIM) specimens to determine the effect of the crystallization behavior on the deformation of FIM parts. More perfect crystalline structures and higher crystallinity developed in the core region of the FIM specimens versus other regions. Relatively imperfect crystalline structures and low crystallinity developed in the adjacent regions of the inserted films, whereas a thin, amorphous skin layer developed in the adjacent regions of the metallic mold wall. The crystallizable substrate in the FIM specimens caused very large warpage because nonuniform shrinkage occurred in the thickness direction of the specimens. Therefore, the warpage of an experimentally prepared FIM poly(butylene terephthalate) specimen was greater than that predicted numerically because of its complex crystallization behavior. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Recently, 5‐amino‐1H‐tetrazole is developed for practical use as a substitute for sodium azide, which is conventionally used as a fuel component of gas generating agents for automobile airbags. In this study, the combustion mechanisms of the mixtures 5‐amino‐1H‐tetrazole/potassium nitrate and 5‐amino‐1H‐tetrazole/sodium nitrate have been examined. It has been found that the Granular Diffusion Flame model is applicable to the tested samples even when a molten layer exists at the burning surface. In addition, it is shown that within the pressure range of 1–5 MPa, the greatest factor which affects the burning rate is the diffusion process. It is also demonstrated that the fuel component decomposes first, and the oxidizer decomposes next. Meanwhile, it has also been confirmed that the burning rate increases with an increase in pressure because the flame approaches the burning surface and the amount of heat transfer to the solid phase increases. In spite of a decrease in the amount of heat transfer from the gas phase to the solid phase and an increase in the thickness of the condensed phase reaction zone for a mixture with higher fuel content, there are little differences in the burning rates probably because of an increase in the rate of decomposition of the solid phase.  相似文献   

10.
We investigated , by visual observation and numerical calculations , the foaming behavior of polypropylene within a foam injection mold cavity with the environmentally benign physical blowing agents nitrogen (N2) and carbon dioxide (CO2) . An 85‐ton core‐back injection‐molding machine with temperature and pressure monitoring systems as well as a high‐pressure view cell was used for the investigation . The experiments showed a prominent difference in bubble nucleation and growth between N2 and CO2 injection foaming . Even when the weight concentration of N2 dissolved in polymer was one‐third that of CO2 , N2 injection foaming provided a bubble number density that was 30 times larger and a bubble size that was one‐third smaller compared to CO2 injection foaming . Classical bubble nucleation and growth models developed for batch foaming were employed to analyze these experimental results . The models reasonably explained the differences in injection foaming behavior between N2 and CO2 . It was clearly demonstrated by both experiments and numerical calculations that N2 provides a higher number of bubbles with a smaller bubble size in foam injection molding compared to CO2 as a result of the lower solubility of N2 in the polymer and the larger degree of super‐saturation . POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers  相似文献   

11.
Monodispersed poly(styrene‐co‐N‐dimethylaminoethyl methacrylate) [P(St‐DMAEMA)] composite microspheres were prepared by employing a Shirasu Porous Glass (SPG) emulsification technique. A mixture of monomer, hexadecane (HD), and initiator N,N′‐azobis(2,4‐dimethylvaleronitrile) (ADVN) was used as a dispersed phase and an aqueous phase containing stabilizer [poly(vinyl pyrrolidone) (PVP) or poly(vinyl alcohol) (PVA)], sodium lauryl sulfate (SLS), and water‐soluble inhibitor [hydroquinone (HQ), diaminophenylene (DAP), or sodium nitrite (NaNO2)], was used as a continuous phase. The dispersed phase was permeated through the uniform pores of SPG membrane into the continuous phase by a gas pressure to form the uniform droplets. Then, the droplets were polymerized at 70°C. The effects of inhibitor, stabilizer, ADVN, and DMAEMA on the secondary nucleation, DMAEMA fraction in the polymer, conversion, and morphologies of the particles were investigated. It was found that the secondary nucleation was prevented effectively in the presence of HQ or DAP when PVP was used as the stabilizer. The secondary particle was observed when ADVN amount was raised to 0.3 g (/18 g monomer); however, no secondary nucleation occurred even by increasing DMAEMA fraction to 10 wt %. This result implied that the diffusion of ADVN into the aqueous phase was a main factor responsible to the secondary nucleation more than that of DMAEMA. The hollow particles were obtained when NaNO2 was used, while one‐hole particles formed in the other cases. By adding crosslinking agent, the hole disappeared and the monomer conversion was improved. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2408–2424, 2001  相似文献   

12.
Gas‐liquid‐liquid slug flow in a capillary reactor is a promising new concept that allows one to incorporate gas‐liquid reaction, liquid‐liquid extraction, and facile catalyst separation in a single unit. In order to assess the performance of a gas‐liquid‐liquid slug flow reactor, it is necessary to predict the slug velocity and pressure drop to ascertain residence times and reaction rates. New empirical models for velocity and pressure drop were developed based on existing models for two‐phase gas‐liquid and liquid‐liquid slug flows, and these were validated experimentally.  相似文献   

13.
A model based on two‐phase volume‐averaged equations of motion is proposed to examine the gravity dependence of the bubble‐to‐pulse transition in gas‐liquid cocurrent down‐flow through packed beds. As input, the model uses experimental correlations for the frictional pressure drop under both normal gravity conditions and in the limit of vanishing gravity, as well as correlations for the liquid‐gas interfacial area per unit volume of bed in normal gravity. In accordance with experimental observations, the model shows that, for a given liquid flow, the transition to the pulse regime occurs at lower gas‐flow rates as the gravity level or the Bond number is decreased. Predicted transition boundaries agree reasonably well with observations under both reduced and normal gravity. The model also predicts a decrease in frictional pressure drop and an increase in total liquid holdup with decreasing gravity levels. © 2013 American Institute of Chemical Engineers AIChE J 60: 778–793, 2014  相似文献   

14.
In this study, we explore the use of solid‐state nucleation in polymer pellets as a means to create microcellular PLA foams in extrusion. This is achieved by using gas‐saturated PLA pellets as input to the extruder. Foam density, bubble size, and bubble density is reported and compared with microcellular foams created in the gas‐injection extrusion process. PLA pellet gas concentrations between 17 and 29 mg CO2/g PLA was found to produce quality microcellular foams in this process. Gas concentrations within this range were achieved by varying methods that included partial saturation, desorption from full saturation, and blending saturated with unsaturated pellets. This gas concentration window that produced microcellular foams was found to be independent of the saturation and desorption process used to achieve the desired concentration. We further compare the pressure drop and pressure drop rate of the gas‐saturated pellet extrusion process showing that similar foams can be produced at pressures orders of magnitude lower than the alternative gas‐injection extrusion processes. Investigations into extrusion pressures support the hypothesis that the gas‐saturated pellet extrusion process utilizes solid‐state nucleation in the feed section of the extruder to achieve high bubble density foams. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
In injection molding, high pressure is required to completely replicate the mold geometry, due to the viscosity of thermoplastic polymers, the reduced thickness of the cavity, and the low mold temperature. The reduction of the drag required to fill a thin‐wall injection molding cavity can be promoted by inducing the strong slip of the polymer melt over the mold surface, which occurs within the first monolayer of macromolecules adsorbed at the wall. In this work, the effects of different laser‐induced periodic surface structures (LIPSS) topographies on the reduction of the melt flow resistance of polypropylene were characterized. Ultrafast laser processing of the mold surface was used to manufacture nano‐scale ripples with different orientation and morphology. Moreover, the effects of those injection molding parameters that mostly affect the interaction between the mold surface and the molten polymer were evaluated. The effect of LIPSS on the slip of the polymer melt was modeled to understand the effect of the different treatments on the pressure required to fill the thin‐wall cavity. The results show that LIPPS can be used to treat injection mold surfaces to promote the onset of wall slip, thus reducing the injection pressure up to 13%. POLYM. ENG. SCI., 59:1889–1896, 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
A mathematical formulation and numerical simulation for non‐isothermal cell growth during the post‐filling stage of microcellular injection molding have been developed. The numerical implementation solves the energy equation, the continuity equation, and a group of equations that describe the mass diffusion of dissolved gas and growth of micro‐cells in a microcellular injection molded part. The “unit‐cell” model employed in this study takes into account the effects of injection and packing pressures, melt and mold temperatures, and super‐critical fluid content on the material properties of the polymer‐gas solution and the cell growth. The material system studied is a microcellular injection molded polyamide 6 (PA‐6) resin. Two Arrhenius‐type equations are used to estimate the coefficients of mass diffusion and solubility for the polymer‐gas solution as functions of temperature. The dependence of the surface tension on the temperature is also included in this study. The numerical results in terms of cell size across the sprue diameter agree fairly well with the experimental observation. The predicted pressure profile at the sprue location has also been found to be in good agreement with the dynamics of the cell growth. Whereas for conventional injection molding the pressure of the system tends to decay monotonously, the pressure profile in microcellular injection molding exhibits an initial decay resulting from cooling and the absence of packing followed by an increase due to cell growth that expands the polymer‐gas solution and helps to pack out the mold uniformly. Polym. Eng. Sci. 44:2274–2287, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
In this work, a new methodology is developed that describes the viscoelastic scaling of a polymer‐physical foaming agent (PFA) solution in a detailed and internally consistent manner. The approach is new in that while previous researchers have largely focused on scaling down experimentally obtained high pressure polymer‐PFA solution viscosity data onto a master curve for the viscosity of the undiluted polymer melt at a reference temperature and atmospheric pressure, we have generated the shear viscosity data required for our simulations by systematically scaling up the viscosity values obtained from measurements on a pure polymer melt to the desired temperature, pressure, and concentration values characterizing the flow. Simulations have been run for the flow of a polymer‐PFA solution through an extrusion foaming die with an abrupt axisymmetric contraction and good qualitative agreement is obtained with experimental pressure drop measurements obtained previously in our laboratory. The pressure drop rates and temperature rise rates have been estimated at the surface of incipient nucleation. Because of the short residence times in the die for the microcellular foaming process, approximating the flow through the die as a single phase flow in our simulations still gives useful insights into the dynamics of the flow. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The scale up of a rotor‐stator spinning disc reactor by stacking single stage rotor‐stator units in series is demonstrated. The gas‐liquid mass transfer per stage is equal to the mass transfer in a single stage spinning disc reactor. The pressure drop per stage increases with increasing rotational disc speed and liquid flow rate. The pressure drop is more than a factor 2 higher for gas‐liquid flow than for liquid flow only, and is up to 0.64 bar at 459 rad s?1. The high mass and heat transfer coefficients in the (multistage) rotor‐stator spinning disc reactor make it especially suitable for reactions with dangerous reactants, highly exothermic reactions and reactions where selectivity issues can be solved by high mass transfer rates. Additionally, the multistage rotor‐stator spinning disc reactor mimics plug flow behavior, which is beneficial for most processes. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

19.
Correlations were developed to predict frictional pressure drop for concurrent gas‐liquid upflow through packed beds covering all the three identified flow regimes, i.e. bubble flow, pulse flow and spray flow. The observation that the gas and liquid flow rates have different influences on the two‐phase pressure drop in different flow regimes, was taken into consideration in the development of these correlations. More than 600 experimental pressure drop data from the present study and literature covering a wide range in gas‐liquid systems, flow rates and column packing were used.  相似文献   

20.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号