首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the pervaporation performance of PDMS membrane, alkyl groups with different chain length were grafted into PDMS matrix. The prepared membranes were characterized by ATR‐IR, DSC, TGA, PALS, and tensile testing. The effects of alkyl grafting on pervaporation performance of PDMS membrane were investigated in separation of ethyl acetate/water mixture. Experimental results show that the separation factor of PDMS membrane is largely improved by alkyl grafting because of the enhanced preferential sorption of ethyl acetate, and this improvement depends on alkyl grafting ratio and alkyl chain length. The total flux of PDMS membrane reduces after alkyl grafting owing to the decreased free volume. When grafting ratio is above 6.9%, membrane grafted with shorter alkyl groups is preferred for pervaporation. The best pervaporation performance is achieved by 9% octyl grafted PDMS membranes with a separation factor of 592 and a total flux of 188 gm?2 h?1 in separation of 1% ethyl acetate/water mixture at 40 °C. Moreover, this octyl grafted PDMS membrane also exhibits excellent separation performance in removal of butyl acetate, methyl‐tert‐butyl ether, and n‐butanol from water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43700.  相似文献   

2.
BACKGROUND: In the present work, the flavor compounds of natural juice of bilberries were qualitatively analyzed by GC‐MS, leading to the identification of trans‐Hex‐2‐en‐1‐ol as one of the major ‘impact aroma’ compounds of this fruit. The pervaporation of trans‐Hex‐2‐en‐1‐ol from diluted aqueous solutions was studied using commercial polydimethylsiloxane (PDMS) capillary membranes. The influences of solvent composition (water/ethanol mixtures), initial concentration of the aroma compound, flow rate and temperature of the feed were studied. RESULTS: High selectivity of the PDMS membrane towards the aroma compound was obtained, leading to enrichment factors in the range 100 < β < 200. Mass transfer resistance was found to be located in the pervaporation membrane. Experimental data showed a linear dependency of the permeation flux of trans‐Hex‐2‐en‐1‐ol on the differences in partial pressures of the compound across the pervaporation membrane. The permeability coefficient of the PDMS membrane to the transport of trans‐Hex‐2‐en‐1‐ol was calculated as Pm, Hex(50 °C) = 7.62 × 10?11 mol m?1 s?1 Pa?1. CONCLUSION: The membrane used was found to be very selective toward trans‐Hex‐2‐en‐1‐ol. A model based on the solution‐diffusion mechanism was applied. The mass transfer parameters needed for the design of a pervaporation process for aroma compound recovery were obtained. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
For the separation of volatile organic compounds (VOCs) from water by pervaporation, three polysiloxaneimide (PSI) membranes were prepared by polycondensation of three aromatic dianhydrides of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA) with a siloxane‐containing diamine. The PSI membranes were characterized using 1H‐NMR, ATR/IR, DSC, XRD, and a Rame‐Hart goniometer for contact angles. The degrees of sorption and sorption selectivity of the PSI membranes for pure organic compounds and organic aqueous solutions were investigated. The pervaporation properties of the PSI membrane were investigated in connection with the nature of organic aqueous solutions. The effects of feed concentration, feed temperature, permeate pressure, and membrane thickness on pervaporation performance were also investigated. The PSI membranes prepared have high pervaporation selectivity and permeation flux towards hydrophobic organic compounds. The PSI membranes with 150‐μm thickness exhibit a high pervaporation selectivity of 6000–9000 and a high permeation flux of 0.031–0.047 kg/m2 h for 0.05 wt % of the toluene/water mixture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2691–2702, 2000  相似文献   

4.
The novel organic–inorganic hybrid membranes were prepared from poly(vinyl alcohol) (PVA) and vinyltriethoxysilane (VTES). They were characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and contact angle metering. The as‐prepared membranes are formed at a molecular scale at a low VTES content. Aggregations in the surface of the as‐prepared membranes were clearly evident above 18.43 wt % VTES loading. The introduction of VTES into the PVA matrix resulted in a decrease in the crystalline and an increase in compactness and thermal stability of the as‐prepared membranes. Silica hybridization reduced the swelling of the as‐prepared membranes in water/ethanol/ethyl acetate mixtures, decreased the permeation flux, and remarkably enhanced water permselectivity in pervaporation dehydration of ethanol/ethyl acetate aqueous solution. The hybrid membrane with 24.04 wt % VTES has the highest separation factor of 1079 and permeation flux of 540 g m?2 h?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
For the purpose of separating aqueous alcohol by the use of pervaporation technique, a composite membrane of chitosan (CT) dip‐coated cellulose acetate (CA) hollow‐fiber membranes, CT‐d‐CA, was investigated. The effects of air‐gap distance in the spinning of CA hollow‐fiber membranes, chitosan concentration, and sorts of aqueous alcohol solutions on the pervaporation performances were studied. Compared with unmodified CA hollow‐fiber membrane, the CT‐d‐CA composite hollow‐fiber membrane effectively increases the permselectivity of water. The thickness of coating layer increases with an increase in chitosan concentration. As the concentration of chitosan solution increased, the permeation rate decreased and the concentration of water in the permeate increased. In addition, the effects of feed composition and feed solution temperature on the pervaporation performances were also investigated. The permeation rate and water content in permeate at 25°C for a 90 wt % aqueous isopropanol solution through the CT‐d‐CA composite hollow‐fiber membrane with a 5‐cm air‐gap distance spun, 2 wt % chitosan dip‐coated system were 169.5 g/m2 h and 98.9 wt %, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1562–1568, 2004  相似文献   

6.
Preparation of organic‐inorganic composite membranes and their pervaporation (PV) permeation and separation characteristics for the aqueous solution of ethyl acetate were described. Polyacrylonitrile (PAN) hollow fiber ultrafiltration membrane as support membrane, the mixtures of perfluorosulfonic acid (PFSA) and tetraethoxysilane (TEOS) by the sol‐gel reaction as the coating solution, the PFSA‐TEOS/PAN hollow fiber composite membranes by the different annealing conditions were prepared. The swelling of PFSA in ethyl acetate aqueous solutions was inhibited with addition of TEOS. The PFSA‐TEOS/PAN composite membranes containing up to 30 wt % TEOS in coating solution exhibited high selectivity towards water, then the selectivity decreased and permeation flux increased with increasing the TEOS concentration more than 30 wt %. When the PFSA‐TEOS/PAN composite membranes were annealed, the separation factor increased with increasing annealing temperature and time. Higher annealing temperature and longer annealing time promoted the crosslinking reaction between PFSA and TEOS in PFSA‐TEOS/PAN composite membranes, leading to the enhanced selectivity towards water. For the PFSA/PAN and PFSA‐TEOS/PAN composite membrane with 5 and 30 wt % TEOS annealed at 90°C for 12 h, their PV performance of aqueous solution 98 wt % ethyl acetate were as follows: the separation factors were 30.8, 254 and 496, while their permeation flux were 1430, 513 and 205 g/m2 h at 40°C, respectively. In addition, the PV performance of PFSA‐TEOS/PAN composite membranes was investigated at different feed solution temperature and concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Membranes made from 84% deacetylated chitosan biopolymer were cross‐linked by a novel method using 2,4‐toluylene diisocyanate (TDI) and tested for the separation of t‐butanol/water mixtures by pervaporation. The unmodified and cross‐linked membranes were characterized by Fourier transform infra red (FTIR) spectroscopy, X‐ray diffraction (XRD) studies and sorption studies in order to understand the polymer–liquid interactions and separation mechanisms. Thermal stability was analyzed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) while tensile strength measurement was carried out to assess mechanical strength. The membrane appears to have good potential for breaking the aqueous azeotrope of 88.2 wt% t‐butanol by giving a high selectivity of 620 and substantial water flux (0.38 kg m?2 hr?1). The effects of operating parameters such as feed composition, membrane thickness and permeate pressure on membrane performance were evaluated. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
In this article a modified polydimethylsiloxane (PDMS) blended polystyrene (PS) interpenetrating polymer network (IPN) membranes supported by Teflon (polytetrafluoroethylene) ultrafiltration membrane were prepared for the separation of ethanol in water by pervaporation application. The relationship between the surface characteristics of the surface‐modified PDMS membranes and their permselectivity for aqueous ethanol solutions by pervaporation are discussed. The IPN supported membranes were prepared by sequential IPN technique. The IPN supported membrane were tested for the separation performance on 10 wt % ethanol in water and were characterized by evaluating their mechanical properties, swelling behavior, density, and degree of crosslinking. The results indicated that separation performance, mechanical properties, density, and the percentage of swelling of IPN membranes were influenced by degree of crosslink density. Depending on the feed temperature, the supported membranes had separation factors between 2.03 and 6.00 and permeation rates between 81.66 and 144.03 g m?2 h?1. For the azeotropic water–ethanol mixture (10 wt % ethanol), the supported membrane had at 30°C a separation factor of 6.00 and a permeation rate of 85 g m?2 h?1. Compared to the PDMS supported membranes, the PDMS/PS IPN supported blend membrane ones had a higher selectivity but a somewhat lower permeability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
BACKGROUND: Cellulose acetate membranes are frequently used for pressure‐driven membrane processes. The aim of this work was to prepare cellulose acetate membranes from nata‐de‐coco using coconut water as starting material. The use of this lignin‐free material will certainly minimize the use of chemicals usually needed in the traditional pulps and substitute for the use of wood, which helps prevent global warming and preserves nature as well. RESULTS: Coconut water was fermented by Acetobacter xylinum for 6 days to produce nata‐de‐coco, which was then acetylated to produce cellulose diacetate with an acetyl content of 39.6%. Fourier transform infrared analysis showed characteristic peaks for the acetyl group at 1748 and 1236 cm?1. The resulting membranes made from the hydrolysis product showed a water flux of 210.5 L m?2 h?1 under an applied pressure of 2 kg cm?2 while the rejection coefficients of dextran T‐500 and T‐2000 solutions were 78 and 93.7%, respectively. CONCLUSION: Coconut water has a potential to be used in the fabrication of membranes by converting it to nata‐de‐coco and then to cellulose diacetate which gives an added value to its original nature. It is also highly competitive compared to the traditional pulps, by which acetylation decreases the degree of crystallinity of nata‐de‐coco resulting in higher membrane permeability. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
Mixed matrix membranes (MMMs) were made by incorporating vinyltrimethoxysilane (VTMS)‐modified Silicalite‐1 zeolite nanoparticles (V‐Silicalite‐1 NPs) into fluorinated polybenzoxazine (F‐PBZ) modified polydimethylsiloxane (PDMS) polymer through in situ polymerization method. The membrane morphology, surface wettability, and pervaporation performance were systematically investigated. The addition of F‐PBZ into PDMS membranes resulted in substantially improved flux and marginal increase of separation factor, which is the result of higher free volume and higher hydrophobicity caused by the addition of F‐PBZ. The modification of Silicalite‐1 NPs improved the interfacial contact between zeolite crystals and polymer phase. The incorporation of hydrophobic V‐Silicalite‐1 zeolite NPs into the PDMS membranes led to much higher separation factor but reduced flux, which is the result of increased hydrophobicity and reduced free volume. The three‐component MMMs with V‐Silicalite‐1 zeolite NPs in the F‐PBZ fluorinated PDMS exhibited separation factor of 28.7 and flux of 0.207 kg m?2 h?1 for 5 wt % ethanol aqueous solution at 50 °C, while the pure PDMS membranes only had separation factor of 4.8 and flux of 0.088 kg m?2 h?1. The substantial increase of both flux and separation factor were attributed to the higher hydrophobicity and free volume caused by the incorporation of both hydrophobic zeolite crystals and F‐PBZ polymer into the PDMS membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44753.  相似文献   

11.
A series of soluble polyimides derived from 3,3′,4,4′‐benzhydrol tetracarboxylic dianhydride (BHTDA) with various diamines such as 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene (BATB), 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene (BADTB), and 2,2′‐dimethyl‐4,4′‐ bis(4‐aminophenoxy)biphenyl (DBAPB) were investigated for pervaporation separation of ethanol/water mixtures. Diamine structure effect on the pervaporation of 90 wt% aqueous ethanol solution through the BHTDA‐based polyimide membranes was studied. The separation factor ranked in the following order: BHTDA–DBAPB > BHTDA–BATB > BHTDA–BADTB. The increase in molecular volume for the substituted group in the polymer backbone increased the permeation rate. As the feed ethanol concentration increased, the permeation rate increased, while the water concentration in the permeate decreased for all polyimide membranes. The optimum pervaporation performance was obtained by the BHTDA–DBAPB membrane with a 90 wt% aqueous ethanol solution, giving a separation factor of 141, permeation rate of 255 g m?2 h?1 and 36 000 pervaporation separation index (PSI) value. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Selective recovery of valuable minor component with high‐purity form from dilute aqueous solution is an interesting issue in the area of organophilic pervaporation. High‐purity aniline was recovered with a high production rate from dilute aqueous solution by a pervaporation‐fractional condensation (PVFC) coupling system. The effects of downstream pressure and temperature (the first condenser) on the performance of PVFC system were investigated based on experimental measurements and Aspen simulations. Sorption and desorption experiments demonstrated that the sorption selectivity of poly(ether block amide) (PEBA‐2533) membrane to aniline was extremely high, indicating excellent pervaporation performance for aniline/water solutions. The perfect integration of high‐performance PEBA‐2533 membrane with the fractional condensation process yielded high production rate of 1222.5 g/(m2 h) as well as high recovery efficiency (86.5%) for recovering high‐purity aniline in the first condenser when feed concentration and temperature were 1 wt % and 80°C, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4445–4455, 2015  相似文献   

13.
Hydrophobic composite membranes with a crosslinked poly(dimethylsiloxane)‐poly(methyl hydrogen siloxane) selective layer were prepared by using a new laboratory made catalyst agent. The pervaporation separation of five organic solvent–water mixtures was carried out with these composite membranes, together with swelling experiments in the same feed mixtures. The volatile organic compounds employed were ethanol, methanol, 1‐butanol, acetone, and ethyl acetate. The pervaporation and swelling experiments revealed that both the 1‐butanol and the ethyl acetate solutions showed the highest affinity for the composite membrane. When these components were employed as feed solutions, the membranes showed both high selectivity and high permeation. Mechanical–dynamical experiments of swollen and nonswollen composite membranes were also performed. The relaxation spectra were analyzed in terms of the interaction of the components of the different mixtures with the composite membrane, and the free volume corresponding to the each sample was obtained. Once the membranes had reached an equilibrium swelling, a decrease in the free volume was observed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 546–556, 2001  相似文献   

14.
Poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) membranes in the hydrogen form were converted to monovalent metal ion forms Li+, Na+, and K+. The effect of exchange with metal ions was investigated by measuring the swelling of water–ethanol (10/90) mixtures at 30 °C and by the pervaporative dehydration performance test for aqueous ethanol solutions with various ethanol concentrations at 30, 40, and 50 °C. In addition, electron spectroscopy for chemical analysis (ESCA) analysis was carried out to study the quantity of metal ions in membranes. From the ESCA analysis, the lithium ion quantity in the resulting membranes is greater than that of any other metal ions in question because of the easy diffusion of a smaller metal ion into the membrane matrix. The swelling ratio was in the following order: PVA/SSA‐Li+ > PVA/SSA‐Na+ > PVA/SSA‐K+ membranes. For pervaporation, the PVA/SSA‐Na+ membrane showed the lowest flux and highest separation factor for all aqueous ethanol solutions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1867–1873, 2002  相似文献   

15.
Water‐soluble hyperbranched polyester (WHBP) was synthesized through the esterification reaction of the fourth generation hyperbranched polyester and maleic anhydride. A novel cross‐linked WHBP/PVA membrane was prepared by adding WHBP into poly(vinyl alcohol) (PVA) solution with glutaraldehyde as the cross‐linker. WHBP was characterized by Nuclear Magnetic Resonance and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR‐FTIR), while WHBP/PVA membranes were characterized by ATR‐FTIR, X‐ray Diffraction, Scanning Electron Microscopy, Thermogravimetric Analysis, mechanical capacity, and water contact angle. Testing results showed that maleic anhydride was grafted on the surface of WHBP; compared with PVA membrane, WHBP/PVA membrane had lower crystallinity, weaker mechanical strength, higher hydrophilicity, and better thermal stability. Sorption and diffusion behaviors of n‐butanol and water in WHBP/PVA membrane were investigated; pervaporation performances of WHBP/PVA membrane were studied through the dehydration of the 90 wt % n‐butanol aqueous solution at 40°C. With an increase of the WHBP content from 0 to 30 wt %, both n‐butanol uptake and n‐butanol diffusion coefficient first decreased then increased; n‐butanol flux first decreased from 10 to 2 g·m?2·h?1 then increased to 213 g·m?2·h?1; both sorption selectivity and diffusion selectivity first increased then decreased; separation factor first increased from 88 to 1309 then decreased to 16. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43533.  相似文献   

16.
《分离科学与技术》2012,47(2):333-347
Abstract

Homogeneous membranes based on fullerene‐polyphenylene oxide compositions containing up to 2 wt% fullerene C60 were prepared. The effect of fullerene addition on PPO transport properties was studied in gas separation and pervaporation processes. Permeability coefficients of H2, O2, N2, CH4, and CO2 were measured; a correlation between gas transport properties and membrane free volume was established. Pervaporation properties were studied for the system with ethyl acetate synthesis reaction: quaternary system ethanol—acetic acid—water—ethyl acetate and some constituent binary and ternary mixtures. Pervaporation in binary systems, ethanol–water and ethyl acetate–water was considered with the use of the data on sorption capacities and interaction parameters. In pervaporation of a quaternary reacting mixture, the permeate containing essentially ethyl acetate was obtained. Results show that membranes with fullerene additives exhibit improved transport properties.  相似文献   

17.
The pervaporation performances of a series of functionalized syndiotactic poly(styrene‐co‐4‐methylstyrene) (SPSM) membranes for various alcohol mixtures were investigated. The syndiotactic polystyrene copolymers, poly(styrene‐co‐4‐methylstyrene) (SPSM), were prepared by styrene with 4‐methylstyrene using a Cp*Ti(OCH3)3/methyl aluminoxane (metallocene/MAO) catalyst. The effect of functionalization on the thermal properties and polymer structure of the SPSM membranes were also investigated. The crystallinity of the functionalized SPSM membrane is lower than that of the unfunctionalized SPSM membranes. The water molecules preferentially permeate through the SPSM membranes. Compared with unfunctionalized SPSM membranes, the functionalized SPSM membrane effectively increases the membrane formation performances and the pervaporation performances. The optimun pervaporation performance (a separation factor of 510 and permeation rate of 220 g/m2h) was obtained by the bromination of SPSM (SPSMBr) membrane with a 90 wt % aqueous ethanol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2247–2254, 2002  相似文献   

18.
Nucleate boiling characteristics of aqueous solutions of hydroxyl ethyl cellulose (HEC QP‐300; M ~ 600 kg/mol) in different concentrations (1.0 × 10?9C ≤ 4.0 × 10?9 mol/cc) are reported. These are viscous non‐Newtonian, shear‐thinning solutions that also display interfacial tension relaxation, which has both a concentration‐dependent and temporal behavior; surface wetting increases as well, as measured by the reduction of contact angle. The measured pool boiling heat transfer from an electrically heated horizontal cylinder in C = 1.0 × 10?9 mol/cc aqueous solution is found to be enhanced by ~20% over the entire heat flux range (4.0 < q < 200 kW/m2). In higher concentration solutions, however, heat transfer degrades at low heat fluxes (incipience and partial boiling) with subsequent enhancement (~45% maximum) at high heat fluxes or in the fully‐developed nucleate boiling regime. This anomalous boiling behavior in the two regimes, characterized by respectively different ebullience signatures, is shown to be scaled with changes in the liquid‐solid interface wetting, vapor‐liquid interfacial tension, and shear‐thinning viscosity of the polymeric solutions. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

19.
The attachment of anticancer agents to polymers is a promising approach towards reducing the toxic side‐effects and retaining the potent antitumour activity of these agents. A new tetrahydrophthalimido monomer containing 5‐fluorouracil (ETPFU) and its homopolymer and copolymers with acrylic acid (AA) and with vinyl acetate (VAc) have been synthesized and spectroscopically characterized. The ETPFU contents in poly(ETPFU‐co‐AA) and poly(ETPFU‐co‐VAc) obtained by elemental analysis were 21 mol% and 20 mol%, respectively. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 8900 g mol?1, Mw = 13 300 g mol?1, Mw/Mn = 1.5 for poly(ETPFU); Mn = 13 500 g mol?1, Mw = 16 600 g mol?1, Mw/Mn = 1.2 for poly(ETPFU‐co‐AA); Mn = 8300 g mol?1, Mw = 11 600 g mol?1, Mw/Mn = 1.4 poly(ETPFU‐co‐VAc). The in vitro cytotoxicity of the compounds against FM3A and U937 cancer cell lines increased in the following order: ETPFU > 5‐FU > poly(ETPFU) > poly(ETPFU‐co‐AA) > poly(ETPFU‐co‐VAc). The in vivo antitumour activities of all the polymers in Balb/C mice bearing the sarcoma 180 tumour cell line were greater than those of 5‐FU and monomer at the highest dose (800 mg kg?1). © 2002 Society of Chemical Industry  相似文献   

20.
A model for the adsorption of gold from I2/I? aqueous solutions onto a cellulose acetate (CA)‐polyaniline (PANI) porous membrane is presented. The adsorption of gold is represented by an ion‐exchange overall reaction in which AuI2? ions replace the Cl? ions at the active sites of the polyaniline matrix. The model incorporates the external mass transfer of AuI2? from the bulk solution to the membrane surface, followed by the pore diffusion of AuI2? to reach the active sites in the membrane. The overall ion‐exchange reaction was assumed to achieve local instantaneous equilibrium. Verification of the kinetic model with the experimental data showed that the effective diffusivity of AuI2? within the membrane is about 8.3 × 10?6 cm2/s. The potential applications of the present formulation are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号