首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computational fluid dynamics—discrete element method (CFD‐DEM) simulations were conducted and compared with magnetic resonance imaging (MRI) measurements (Boyce, Rice, and Ozel et al., Phys Rev Fluids. 2016;1(7):074201) of gas and particle motion in a three‐dimensional cylindrical bubbling fluidized bed. Experimental particles had a kidney‐bean‐like shape, while particles were simulated as being spherical; to account for non‐sphericity, “effective” diameters were introduced to calculate drag and void fraction, such that the void fraction at minimum fluidization (εmf) and the minimum fluidization velocity (Umf) in the simulations matched experimental values. With the use of effective diameters, similar bubbling patterns were seen in experiments and simulations, and the simulation predictions matched measurements of average gas and particle velocity in bubbling and emulsion regions low in the bed. Simulations which did not employ effective diameters were found to produce vastly different bubbling patterns when different drag laws were used. Both MRI results and CFD‐DEM simulations agreed with classic analytical theory for gas flow and bubble motion in bubbling fluidized beds. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2555–2568, 2017  相似文献   

2.
Although the use of computational fluid dynamics (CFD) model coupled with population balance (CFD‐PBM) is becoming a common approach for simulating gas–solid flows in polydisperse fluidized bed polymerization reactors, a number of issues still remain. One major issue is the absence of modeling the growth of a single polymeric particle. In this work a polymeric multilayer model (PMLM) was applied to describe the growth of a single particle under the intraparticle transfer limitations. The PMLM was solved together with a PBM (i.e. PBM‐PMLM) to predict the dynamic evolution of particle size distribution (PSD). In addition, a CFD model based on the Eulerian‐Eulerian two‐fluid model, coupled with PBM‐PMLM (CFD‐PBM‐PMLM), has been implemented to describe the gas–solid flow field in fluidized bed polymerization reactors. The CFD‐PBM‐PMLM model has been validated by comparing simulation results with some classical experimental data. Five cases including fluid dynamics coupled purely continuous PSD, pure particle growth, pure particle aggregation, pure particle breakage, and flow dynamics coupled with all the above factors were carried out to examine the model. The results showed that the CFD‐PBM‐PMLM model describes well the behavior of the gas–solid flow fields in polydisperse fluidized bed polymerization reactors. The results also showed that the intraparticle mass transfer limitation is an important factor in affecting the reactor flow fields. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1717–1732, 2012  相似文献   

3.
CFD–Discrete Element Method (DEM) model is an effective approach for studying dense gas–solid flow in fluidized beds. In this study, a CFD–DEM model for complex geometries is developed, where DEM code is coupled with ANSYS/Fluent software through its User Defined Function. The Fluent Eulerian multiphase model is employed to couple with DEM, whose secondary phase acts as a ghost phase but just an image copy of DEM field. The proposed procedure preserves phase conservation and ensures the Fluent phase-coupled SIMPLE solver work stable. The model is used to simulate four typical fluidization cases, respectively, a single pulsed jet fluidized bed, fluidized bed with an immersed tube, fluidization regime transition from bubbling to fast, and a simplified two-dimensional circulating fluidized bed loop. The simulation results are satisfactory. The present approach provides an easily implemented and reliable method for CFD–DEM model on complex geometries.  相似文献   

4.
An experimental and computational study is presented on the hydrodynamic characteristics of FCC particles in a turbulent fluidized bed. Based on the Eulerian/Eulerian model, a computational fluid dynamics (CFD) model incorporating a modified gas‐solid drag model has been presented, and the model parameters are examined by using a commercial CFD software package (FLUENT 6.2.16). Relative to other drag models, the modified one gives a reasonable hydrodynamic prediction in comparison with experimental data. The hydrodynamics show more sensitive to the coefficient of restitution than to the flow models and kinetics theories. Experimental and numerical results indicate that there exist two different coexisting regions in the turbulent fluidized bed: a bottom dense, bubbling region and a dilute, dispersed flow region. At low‐gas velocity, solid‐volume fractions show high near the wall region, and low in the center of the bed. Increasing gas velocity aggravates the turbulent disorder in the turbulent fluidized bed, resulting in an irregularity of the radial particle concentration profile. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

5.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
Gas-solid heat transfer in rotating fluidized beds in a static geometry is theoretically and numerically investigated. Computational fluid dynamics (CFD) simulations of the particle bed temperature response to a step change in the fluidization gas temperature are presented to illustrate the gas-solid heat transfer characteristics. A comparison with conventional fluidized beds is made. Rotating fluidized beds in a static geometry can operate at centrifugal forces multiple times gravity, allowing increased gas-solid slip velocities and resulting gas-solid heat transfer coefficients. The high ratio of the cylindrically shaped particle bed “width” to “height” allows a further increase of the specific fluidization gas flow rates. The higher specific fluidization gas flow rates and increased gas-solid slip velocities drastically increase the rate of gas-solid heat transfer in rotating fluidized beds in a static geometry. Furthermore, both the centrifugal force and the counteracting radial gas-solid drag force being influenced by the fluidization gas flow rate in a similar way, rotating fluidized beds in a static geometry offer extreme flexibility with respect to the fluidization gas flow rate and the related cooling or heating. Finally, the uniformity of the particle bed temperature is improved by the tangential fluidization and resulting rotational motion of the particle bed.  相似文献   

7.
The effects of sound assistance on fluidization behaviors were systematically investigated in a gas–solid acoustic fluidized bed. A model modified from Syamlal–O'Brien drag model was established. The original solid momentum equation was developed and an acoustic model was also proposed. The radial particle volume fraction, axial root‐mean‐square of bed pressure drop, granular temperature, and particle velocity in gas–solid acoustic fluidized bed were simulated using computational fluid dynamics (CFD) code Fluent 6.2. The results showed that radial particle volume fraction increased using modified drag model compared with that using the original one. Radial particle volume fraction was revealed as a parabolic concentration profile. Axial particle volume fraction decreased with the increasing bed height. The granular temperature increased with increasing sound pressure level. It showed that simulation values using CFD code Fluent 6.2 were in agreement with the experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

8.
在外加竖直方向梯度磁场的气固鼓泡流化床中,考虑铁磁颗粒受到的梯度磁场力和颗粒间磁感应力,对气相采用流体力学方法(CFD),颗粒相采用离散元法(DEM),建立二维磁鼓泡流化床数学模型,模拟不同磁场强度下全磁颗粒圆形床料的气固流动过程,分析了不同磁场强度对磁流化床中气泡生长、颗粒运动、床层压降和磁颗粒受力的影响。研究结果表明在沿高度磁感应强度递减的梯度磁场中,磁颗粒在颗粒间磁感应力的作用下凝聚成链,破坏了大气泡的形成。随着磁场强度增加,颗粒扩散系数减小,颗粒间磁感应力和梯度磁场力增大;气体与颗粒相间作用力先减小、后增加;而颗粒接触力先增加、后减小。  相似文献   

9.
The erosion of the immersed tubes in a bubbling‐fluidized bed is studied numerically using an Eulerian–Lagrangian approach coupling with a particle‐scale erosion model. In this approach, the motion of gas and particles is simulated by the CFD–DEM method, and an erosion model SIEM (shear impact energy model) is proposed to predict the erosion of the tubes. The model is validated by the good agreement of the simulation results and previous experimental data. By analyzing the simulation results, some characteristics of the tube erosion in the fluidized bed are obtained, such as the distribution of the erosion rate around the tube, the variation of the erosion rate with the position of the tube, the effect of the friction coefficient of particles on the erosion, the relationship between the maximum and the average erosion rate, etc. The microscale behavior of particles around the tubes is also revealed and the linear relationship between the erosion and the shear impact energy is confirmed by the simulation results and experiment. The agreement between simulation and experiment proves that the microscale approach proposed in this article has high accuracy for predicting erosion of the tubes in the fluidized bed, and has potential to be applied to modeling the process in other chemical equipment facing solid particle erosion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 418–437, 2017  相似文献   

10.
The effect of bubble injection characteristics on the mixing behavior of a gas‐solid fluidized bed is investigated using a discrete particle model. The effect of different parameters including gas injection time, velocity, and mode are studied. Simulation results show that injecting gas at a constant gas flow rate in the form of small bubbles results in a better overall particle mixing. It was also found that the injection velocities have limited effect on particle mixing behavior for the same total gas volume injected into the bed. Moreover, the mixing index (MI) of continuous gas jet bubbling regime is compared with the MI obtained in uniform gas injection regime and the results revealed that the MI of continuous jet bubbling regime has a larger value than that of uniform gas injection regime at the fixed total gas flow rate. In both regimes, z‐direction MI is larger than x‐direction index. The differences between two direction indices are more noticeable in continuous jet bubbling in comparison with the uniform gas injection regime. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1430–1438, 2016  相似文献   

11.
针对气固节涌床,在实验基础上,基于欧拉?欧拉双流体模型结合颗粒动力学理论,考虑Geldart A类颗粒聚团对气固间曳力的影响,采用修正后的Gidaspow曳力模型对气固节涌床进行数值模拟。结果表明,通过与实验结果及经验公式进行对比,修正的模型可准确合理地模拟流化床内节涌特性。表观气速0.09 m/s≤Ug≤0.39 m/s时,床层内部压力脉动标准偏差随表观气速增加而增加,流型由鼓泡转变为节涌直至节涌程度最大,床内气固流动主要受轴对称栓运动特性影响,床内压降、床层膨胀比、气栓平均上升速度、最大轴对称栓长度随表观气速增加而增加,最大轴对称栓产生位置随表观气速增加而降低;Ug>0.39 m/s后,床内压力脉动标准偏差随表观气速增加而降低,节涌程度降低至向湍动流态化流型转变,床内气固流动主要受壁面栓运动特性影响,增加表观气速,节涌床内压降变化幅度较小,气栓平均上升速度增加幅度加大,床层膨胀比及最大轴对称栓长度降低,最大轴对称栓产生的位置略有升高。  相似文献   

12.
A multi-fluid Eularian CFD model with closure relationships according to the kinetic theory of granular flow has been applied to study the motions of particles in the gas bubbling fluidized bed with the binary mixtures. The mutual interactions between the gas and particles and the collisions among particles were taken into account. Simulated results shown that the hydrodynamics of gas bubbling fluidized bed related with the distribution of particle sizes and the amount of energy dissipated in particle-particle interaction. In order to obtain realistic bed dynamics from fundamental hydrodynamic models, it is important to correctly take the effect of particle size distribution and energy dissipation due to non-ideal particle-particle interactions into account.  相似文献   

13.
布风方式对流化床混合特性的影响   总被引:2,自引:0,他引:2  
通过将离散单元法同计算流体力学相结合,对流化床内物料混合过程进行了研究。给出了水平布风板均匀布风、倾斜布风板非均匀布风2种情况下的示踪颗粒场历变过程。模拟结果表明:瞬时颗粒场组图能够较为直观表征床内混合现象;其中,在均匀布风情况下,床内气泡横向运动受到限制,颗粒整体横向运动能力较弱,混合方式以扩散混合为主;而对于非均匀布风流化床,床内存在较大的横向颗粒浓度梯度,对流混和起主要作用,且混合速度较为迅速。  相似文献   

14.
Fluidized‐bed reactors are widely used in the biofuel industry for combustion, pyrolysis, and gasification processes. In this work, a lab‐scale fluidized‐bed reactor without and with side‐gas injection and filled with 500–600 μm glass beads is simulated using the computational fluid dynamics (CFD) code Fluent 6.3, and the results are compared to experimental data obtained using pressure measurements and 3D X‐ray computed tomography. An initial grid‐dependence CFD study is carried out using 2D simulations, and it is shown that a 4‐mm grid resolution is sufficient to capture the time‐ and spatial‐averaged local gas holdup in the lab‐scale reactor. Full 3D simulations are then compared with the experimental data on 2D vertical slices through the fluidized bed. Both the experiments and CFD simulations without side‐gas injection show that in the cross section of the fluidized bed there are two large off‐center symmetric regions in which the gas holdup is larger than in the center of the fluidized bed. The 3D simulations using the Syamlal‐O'Brien and Gidaspow drag models predict well the local gas holdup variation throughout the entire fluidized bed when compared to the experimental data. In comparison, simulations with the Wen‐Yu drag model generally over predict the local gas holdup. The agreement between experiments and simulations with side‐gas injection is generally good, where the side‐gas injection simulates the immediate volatilization of biomass. However, the effect of the side‐gas injection extends further into the fluidized bed in the experiments as compared to the simulations. Overall the simulations under predict the gas dispersion rate above the side‐gas injector. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

15.
近些年,我国成功开发了以煤为原料的甲醇制烯烃(Methanol to Olefins, MTO)生产工艺和技术,带动煤制烯烃产业的快速发展,保障了国家能源安全。流化床式反应器是MTO工业生产的核心反应装置,通过计算流体力学(Computational Fluid Dynamics, CFD)方法深入认知MTO流化床内的流化特性规律具有重要的意义,它可以从理论上更加准确地指导MTO流化床的优化与放大。本工作采用基于宏观?亚网格层次的气泡EMMS曳力和传统TFM耦合计算的多尺度CFD方法,对工业尺度MTO流化床内的多相流化行为进行了三维数值模拟。模拟结果表明,该多尺度CFD方法考虑了气泡结构对气?固相间曳力的影响,能较准确地预测MTO流化床内轴向颗粒浓度的“S-型”分布规律,且得到实验数据的验证;所预测的径向颗粒浓度分布呈现出经典的“环?核”分布规律,气体/颗粒的轴向时均速度在径向上的分布也与实际情况相互佐证,表明该多尺度CFD方法显著改善了基于均匀曳力的传统TFM对于宏观流场的预测能力。下一步工作将多尺度CFD方法拓展应用于MTO流化床优化放大及反应特性的研究。  相似文献   

16.
C. Yang  Y. Duan 《化学工程与技术》2013,36(11):1907-1914
The domain coverage method (DCM) is proposed to establish a computational fluid dynamics‐discrete element method (CFD‐DEM) model based on irregular mesh. The gas field was solved by Fluent software and the DEM model was coupled with Fluent software by user‐defined functions. Gas turbulent viscosity was calculated by the coupled k‐? two‐equation model and the soft‐sphere collision model was used to get particle contact force. The CFD‐DEM model based on irregular mesh was firstly verified to be reasonable by comparing the simulated injected bubble with that simulated by Bokkers et al. The solid exchange behavior was studied numerically in a 2D dual‐leg fluidized bed (DL‐FB). The simulation results were compared with experimental results and proved that the CFD‐DEM model is established successfully based on the efficient DCM. The DEM model is expanded to be used on irregular mesh in fluidized beds with complex geometries.  相似文献   

17.
Nanoparticles are fluidized as agglomerates with hierarchical fractal structures. In this study, we model nanoparticle fluidization by assuming the simple agglomerates as the discrete element in an adhesive (Computational Fluid Dynamics—Discrete Element Modelling) CFD‐DEM model. The simple agglomerates, which are the building blocks of the larger complex agglomerates, are represented by cohesive and plastic particles. It is shown that both the particle contact model and drag force interaction in the conventional CFD‐DEM model need modification for properly simulating a fluidized bed of nanoparticle agglomerates. The model is tested for different cases, including the normal impact, angle of repose (AOR), and fluidization of nanoparticle agglomerates, represented by the particles with the equivalent material properties. It shows that increasing the particle adhesion increases the critical stick velocity, angle of repose, and leads from uniform fluidization to defluidization. The particle adhesion, bulk properties, and fluidization can be linked to each other by the current adhesive CFD‐DEM model. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2259–2270, 2016  相似文献   

18.
Transient flow behaviors in a novel circulating‐turbulent fluidized bed (C‐TFB) were investigated by a multifunctional optical fiber probe, that is capable of simultaneously measuring instantaneous local solids‐volume concentration, velocity and flux in gas‐solid two‐phase suspensions. Microflow behavior distinctions between the gas‐solid suspensions in a turbulent fluidized bed (TFB), conventional circulating fluidized bed (CFB), the bottom region of high‐density circulating fluidized bed (HDCFB), and the newly designed C‐TFB were also intensively studied. The experimental results show that particle‐particle interactions (collisions) dominate the motion of particles in the C‐TFB and TFB, totally different from the interaction mechanism between the gas and solid phases in the conventional CFB and the HDCFB, where the movements of particles are mainly controlled by the gas‐particle interactions (drag forces). In addition, turbulence intensity and frequency in the C‐TFB are significantly greater than those in the TFB at the same superficial gas velocity. As a result, the circulating‐turbulent fluidization is identified as a new flow regime, independent of turbulent fluidization, fast fluidization and dense suspension upflow. The gas‐solid flow in the C‐TFB has its inherent hydrodynamic characteristics, different from those in TFB, CFB and HDCFB reactors. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

19.
以带冷却盘管的大型高温费托流化床反应器为研究对象,开展三维计算流体力学模拟研究。传统双流体模型基于局部平均的假设,认为单位控制体内气固两相均匀分布,网格尺寸必须足够小才能正确揭示局部非均匀结构的所有细节。采用双流体模型模拟大型工业化流化床装置时,将导致网格数量过于庞大,远超现有计算能力。为提高计算效率的同时不损失模拟精度,提出了基于局部非均匀假设、适用于粗网格的拟泡-乳三相非均匀曳力(PBTD)模型。该模型将流化床分为乳化相气体、乳化相颗粒以及气泡三相,分别建立守恒方程,体现气泡的非均匀特性对气固曳力的影响。乳化相内气固曳力以及气泡相与乳化相内颗粒的曳力分开考虑。采用PBTD模型耦合传质和反应模型,建立基于局部非均匀假设的高温费托合成反应器三维流动-传递-反应模型,包括各相守恒控制方程、气泡尺寸模型、相间物质和动量交换模型、高温费托合成反应动力学模型以及初始和边界条件,预测反应器内的流场和组分浓度分布。研究结果表明:在粗网格条件下,非均匀曳力模型可以预测床层内相含率的分布情况,预测的床层膨胀高度与经验公式计算值接近,偏差为1.2%。反应器出口气体组分的质量分数与试验测量值相近,偏差在1.5%~16.0%。模拟结果证实,基于非均匀假设的PBTD模型适用于模拟工业规模的鼓泡流化床反应器,对其设计开发和工业运行具有指导价值。  相似文献   

20.
佟颖  Ahmad Nouman  鲁波娜  王维 《化工学报》2019,70(5):1682-1692
双分散气固鼓泡流化床中颗粒通常具有不同粒径或密度,导致产生颗粒偏析等现象,影响传递和反应行为。颗粒分离和混合与气泡运动密不可分,其中相间曳力起关键作用。最近Ahmad等提出了一种基于气泡结构的双分散介尺度曳力模型,能成功预测双分散鼓泡流化床的床层膨胀系数。本研究耦合该曳力模型与连续介质方法,模拟了两种不同的双分散鼓泡流化床,通过分析不同流化状态下的气泡运动、颗粒浓度比的轴向分布等参数,进一步检验模型的适用性。研究表明,当双分散颗粒处于完全流化状态时,耦合双分散介尺度曳力模型可合理预测不同颗粒的分离现象;而其处于过渡流化状态时,新曳力模型和传统模型均无法获得合理结果,此时调节固固曳力可改进模拟结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号