首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evaporation behavior of urea‐water‐solution (UWS) droplet was investigated for application to urea‐selective catalytic reduction (SCR) systems. A number of experiments were performed with single UWS droplet suspended on the tip of a fine quartz fiber. To cover the temperature range of real‐world diesel exhausts, droplet ambient temperature was regulated from 373 to 873 K using an electrical furnace. As a result of this study, UWS droplet revealed different evaporation characteristics depending on its ambient temperature. At high temperatures, it showed quite complicated behaviors such as bubble formation, distortion, and partial rupture after a linear D2‐law period. However, as temperature decreases, these phenomena became weak and finally disappeared. Also, droplet diminishment coefficients were extracted from transient evaporation histories for various ambient temperatures, which yields a quantitative evaluation on evaporation characteristics of UWS droplet as well as provides valuable empirical data required for modeling or simulation works on urea‐SCR systems. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

2.
This work is aimed to develop a multicomponent evaporation model for droplets of urea‐water solution (UWS) and a thermal decomposition model of urea for automotive exhausts by using the selective catalytic reduction systems. In the multicomponent evaporation model, the influence of urea on the UWS evaporation is taken into account using a nonrandom two‐liquid activity model. The thermal decomposition model is based on a semidetailed kinetic scheme accounting not only for the production of ammonia (NH3) and isocyanic acid but also for the formation of heavier solid by‐products (biuret, cyanuric acid, and ammelide). This kinetics model has been validated against gaseous data as well as solid‐phase concentration profiles obtained by Lundstroem et al. (2009) and Schaber et al. (2004). Both models have been implemented in IFP‐C3D industrial software to simulate UWS droplet evaporation and decomposition as well as the formation of solid by‐products. It has been shown that the presence of the urea solute has a small influence on the water evaporation rate, but its effect on the UWS temperature is significant. In addition, the contributions of hydrolysis and thermolysis to urea decomposition have been assessed. Finally, the impacts of the heating rate as well as gas‐phase chemistry on urea decomposition pathways have been studied in detail. It has been shown that reducing the heating rate of the UWS causes the extent of the polymerization to decrease because of the higher activation energy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

3.
A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.  相似文献   

4.
The behavior of droplets of urea-water-solution (UWS) evaporating under the influence of a hot stream of air was investigated experimentally, under temperatures ranging from 100°C to 400°C. The droplets were suspended on a glass microfiber to minimize the influence of heat conduction, through the fiber, on the evaporation rate of the droplet. The flow rate of air, under all experimental conditions, was measured and these data were used to estimate the average velocity of air around the droplet. Experiments were also conducted on droplets of pure water and the results were compared. The initial mass fraction of urea, in the solution, did not appear to have a significant effect on the evaporation constant, but it did affect a few essential aspects of the evaporation behavior. The evaporation of water droplets was in accordance with the d2 law at all temperatures, whereas the evaporation of UWS droplets was ambient-temperature dependent.  相似文献   

5.
The current work aims to develop a reliable theoretical model capable of simulating the depletion process of urea‐water‐solution (UWS) droplets injected in a hot exhaust stream as experienced in an automotive urea‐based selective catalytic reduction system. A modified multicomponent vaporization model is presented and implemented in the current study to simulate the behavior of UWS droplet in heated environment. Although water depletion is modeled as a vaporization process, urea depletion is modeled using two different approaches: (i) vaporization and (ii) direct thermal decomposition. The suitability of both depletion approaches is assessed in the current study by comparison with experimental data of the decay of a single UWS droplet in a quiescent heated environment. The decay rate of UWS droplet is accurately predicted with the multicomponent vaporization model. The possibility of internal gasification is demonstrated. Based on the complex decomposition behavior of urea, the current study proposes a decomposition mechanism for UWS droplet. The suitability of implementing the rapid mixing approach is assessed through comparison with the diffusion limit approach at various operating conditions and initial UWS droplet sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

6.
The present study deals with the numerical analysis of the water droplet evaporation in the carrier gas inside an ultrasonic spray pyrolysis (USP) device. Droplet evaporation is studied through numerical computational fluid dynamics simulation using Ansys Fluent version 16.1 software. The governing equations for mass, momentum, and energy contain source terms for the effects of droplet evaporation. The results are provided as time dependent evaporation rate, temperature and diameter of droplet. Additional experimental evaporation of HAuCl4 solution droplets with temperatures of 80, 100 and 120°C was performed on a USP device. The obtained dried particles of gold chloride were characterized with TEM and analysed for their size and shapes to determine the effect of evaporation rate on the dried particle morphology. This provides insight into selecting optimal parameters for gold nanoparticle synthesis with HAuCl4 in USP, for targeted sizes and shapes of the nanoparticles.  相似文献   

7.
《Drying Technology》2012,30(10):1029-1036
The convective drying kinetics of single droplets of aqueous glucose was measured using a single droplet drying rig. The effects of air temperature and velocity were evaluated. It was found that the droplet of aqueous glucose shrank uniformly, retaining a nearly spherical shape during drying. The normalized volume (d/d0)3 of the droplet decreased linearly with its moisture content. A constant-drying-rate-like period occurred when the moisture content of the droplet was higher than an amount of about 1.0 kg kg?1 dry solid. The diameter of the droplet decreased sharply due to the evaporation of water, while its temperature remained at a wet-bulb-like temperature in this period. When the moisture content of the droplet was lower than the above-mentioned value, the drying transferred to a falling-drying-rate-period, during which the temperature of the droplet rose quickly and approached the air temperature as drying continued. The effect of air temperature on the drying of single droplets of aqueous glucose was more pronounced when compared with that of air velocity.  相似文献   

8.
The time-dependent evaporation of an oblate spheroidal droplet that undergoes forced convection was numerically investigated by solving the governing equations of energy, mass, and momentum. The research results elucidate the effects of oblate spheroid shape on droplet evaporation. A quantitative evaluation of spheroidal geometrical parameters (i.e., equatorial diameter, surface area, and volume) reveals that the evaporation rate increases at a much higher rate for an oblate droplet that approaches a disk-like shape of the same equivalent volume as a sphere. The variation of local Sherwood number on the surface of an oblate spheroid was obtained for the Reynolds number (2?≤?Re?≤?150) and the droplet axis ratio (0.1?≤?Axr?≤?0.9).  相似文献   

9.
尿素水溶液液滴的蒸发特性   总被引:1,自引:0,他引:1  
在石英管式炉上通过挂滴法来观察单个尿素水溶液(urea-aqueous-solution,UAS)液滴的具体蒸发过程,比较了不同环境温度以及不同初始直径大小下液滴的蒸发特性。结果表明,尿素溶液液滴在100~1300 ℃的温度范围内呈现出了不同的蒸发行为。在较高的温度下,液滴的蒸发行为较为复杂,如气泡的产生、液滴的变形以及发生微爆的现象;但是,随着环境温度的降低,这些现象就变得非常微弱甚至消失。同时,还定量分析了稳态蒸发常数与温度、液滴初始直径之间的变化关系,发现在初始直径为2.5 mm、温度在100~600 ℃之间变化的情况下,稳态蒸发常数从0.02075 mm2/s增加到了0.23953 mm2/s,增大了10倍左右。此外,还对气流流速为0.25~1.25 m/s范围内的液滴蒸发特性作了实验研究。当液滴周围有强迫气流存在时,液滴与气体间的换热方式由导热转变为对流换热,从而增强了液滴表面的传热传质能力,促进了液滴的蒸发。  相似文献   

10.
The separation of two different sized particles during evaporation of a dilute droplet is examined both computationally and experimentally. A transport model of the evaporating droplet system was solved using the finite element method to determine the fluid velocity, pressure, vapor concentration surrounding the droplet, temperature, and both particle concentrations. Experimentally, 1 μm and 3 μm polystyrene particles were used during the evaporation of a sessile water droplet. It was determined that to accurately model particle deposition, thermal effects need to be considered. The Marangoni currents in evaporating droplets keep particles suspended in the droplet until the end of the evaporation. Previous models of particle deposition during droplet evaporation have rapid accumulation of particles at the contact line. Our experiments and the experiments of others demonstrate that this is not accurate physically. In addition, to model the separation of two different sized particles the consideration of thermal effects is essential. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3547–3556, 2015  相似文献   

11.
The contact angle, θ, and volume equivalent diameter of an (NH4)2SO4 aqueous droplet was measured using an environmental scanning electric microscope (ESEM), showing the hygroscopic growth of the solution droplet as the relative humidity (RH) increased from 80% to 98%. (NH4)2SO4 particles with diameters in the range 1–2 μ m were produced by an atomization technique, and collected onto a copper substrate that had been treated with polytetrafluoroethylene. To observe the hygroscope growth, the sample chamber of the ESEM was filled with water vapor at a pressure of 600 Pa, and the sample temperature was adjusted using a cooling stage to control the relative humidity inside the chamber. Before the observation of the hygroscopic growth, we determined the value of θ from overhead views of droplets on the stage at a tilted angle of 45°. The average value of θ was 96 ± 10°, and this value was used to estimate the droplet diameter. We measured the diameter of the (NH4)2SO4 droplets at different RH, and observed that the growth factor, G, increased with increasing RH. The experimental value of G was consistent with the theoretically estimated value. This shows that our method for determining the value of θ was valid, and that the ESEM technique can be used to measure the diameters of droplets of aqueous solutions.  相似文献   

12.
Experimental data on the drying behavior of suspension droplets is limited, despite its importance in industrial applications for material processing, chemical or the food industry involving spray dryers. This fact is particularly significant for high load and temperature conditions, as found in such industrial applications. In this work, the drying behavior of acoustically levitated multiphase droplets has been experimentally investigated. The acoustic tube levitator has been modified in order to allow experiments to be performed at high temperature conditions. The flow rate, temperature and relative humidity of this air stream can be controlled by an air conditioning system. A CMOS camera and a back-light illumination system are used to measure the droplet cross-sectional area and vertical position of the droplet during the drying process. The experiments have been performed using water–glass particle suspensions. The glass particles have a mean particle size and relative density of 13 μm and 2.5, respectively. The effect of the air temperature (60 °C<T<120 °C), initial volume of the droplet (0.05 μl<V0<0.7 μl), initial solid mass load (0.01<YS<0.5) and relative humidity of the air (0.05<HR<0.45) on the mean porosity of the grain, first drying period duration and liquid evaporation rate has been analyzed by means of a parametric screening matrix and also by means of a central composite design (CCD) experimental design. The most important parameters to be considered for the porosity and the drying behavior in the range of variables analyzed are the initial solid mass load and the initial droplet volume. The relative humidity of the air exerts a moderate influence on the drying behavior of the droplet and the temperature has only a very low impact on the mean porosity. In addition, particular attention should be given to the drying behavior of small droplets, which result in a very low mean porosity values for high solid mass loads. The CCD confirms that the initial droplet volume, the solid mass load and their interaction exert significant influence on the three responses.  相似文献   

13.
The rising of droplets in water contaminated with two surfactants, sodium salt dodecylhydrogenosulphate (L.S.S.) and Teepol, in the range 200 < NRep < 1000 was studied. The dispersed phases used were cyclohexane, benzene, toluene, and n-heptane. Experiences were conducted at a constant temperature of 30°C. It was shown that the presence of the two agents decreases the final rising rate of the droplets with an increasing surfactant concentration and droplet diameter. For the same interfacial tension values, this phenomenon is enhanced in the case of Teepol. An equation is proposed for the computation of the critical droplet diameter as well as the droplet rising rate. These equations demonstrate the effect of the chemical nature of the surface agent and reproduce the experimental results with variations less than 10%.  相似文献   

14.
For numerical simulations of the combustion of liquid fuels, a thoroughly validated and verified quantitative model for droplet evaporation is necessary. In this work a simple single droplet infinite conductivity model is simulated for low pressure (0.1 MPa) and various temperatures (550–1050 K) using a chosen property rule (see Eq. (7)) and five convection correlations (C1, C2, C3, C4, and C5, see (Table 1) to obtain the temporal evolution of droplet diameter squared, droplet surface temperature and average evaporation rates of vegetable oil derived biofuels – rapeseed methyl ester (RME) and sunflower methyl ester (SME) – under near-quiescent conditions. The predictions are compared with the experimental and analytical results of Morin et al. [1]. The model uses an effective Reynolds number to conflate the effects of forced and natural convection. It is observed that the predicted temporal history of droplet diameter for RME droplet matches more closely with correlation C1 for Tamb ? 748 K and correlation C2 for Tamb ? 803 K at various ambient temperatures (i.e., from low to high evaporation rate). The correct droplet lifetime is predicted best by C1 for all temperatures. For average evaporation rates for SME, C1 best fits the experimental data. For the average evaporation rate of RME, the present model with C1 gives a better prediction than the theoretical, and corrected theoretical results of Morin et al. [1], and is observed to match closely with their experimental results. The present results using C2 are also found close to the experimental results for RME and SME. It is observed that the oxidation of RME/SME is similar to n-decane – a pure component fuel.  相似文献   

15.
In order to give an estimation of the safety of nuclear power plants, it is necessary to characterize the aerosol that develops in the event of a serious accident. Aerosol formation in a graphite-moderated high-temperature pebble bed reactor is possible when water or steam intrudes into the helium primary circuit. Because of the great temperature gradient between water droplets and the pebble surface, the evaporation of water is determined by the thin steam layer between the droplet and hot surface. The thin steam layer reduces the heat flux from the pebble to the water droplet. This effect is the well-known Leidenfrost phenomenon. The steam discharges from the steam layer at a high velocity, and is able to dislodge particles from the pebbles. The chemical reaction of the hot pebble graphite with steam results in a gasification by producing a gas mixture of H2O, He, CO, C02, and CH4. In order to investigate the process of aerosol formation a test device was set up containing 1500 spherical graphite elements with a diameter of 10 mm, which can be heated up to a temperature of 1500°K. The mass concentration of the thus-produced graphite particles in the aerosol increases rapidly, when the corrosion progress has reached a specific value. The size distribution of the equivalent aerodynamic diameter is shifted to larger diameters with rising corrosion time.  相似文献   

16.
ABSTRACT

Colloidal silica has been used frequently as a model material of drying in the past two decades. Several models of single droplet drying have been validated against the sole experimental evidence by Ne?i? and Vodnik (Kinetics of droplet evaporation. Chemical Engineering Science 1991, 46(2), 527–537), in which relatively scattered experimental data on drying of single droplet of colloidal silica were provided. Due to the importance of this sort of data, the drying of single droplet of colloidal silica was determined more accurately under more extensive conditions in this work. The effect of air temperature on the drying of single droplet of colloidal silica was probed as well as the evolution of particle morphology. The droplet of colloidal silica was found to shrink irregularly during drying due to uneven exposure of droplet surface to air stream. The moisture within the droplet appears to transfer freely to the surface, keeping the surface highly moist. For a large part of drying process, drying of single droplet of colloidal silica is similar to the evaporation of water droplet, which can be predicted well using a simple mathematical model.  相似文献   

17.
Droplet size distribution is a crucial parameter of atomization process besides droplet mean diameter. In this paper, the finite stochastic breakup model (FSBM) of prefilming air-blast atomization process has been proposed according to the self-similarity of droplet breakup. There are four parameters in FSBM, which are the initial droplet diameter D0, the maximum stable droplet size Dc, the minimum mass ratio of a sub-droplet to the mother droplet a, and the droplet breakup probability P(D). The simulation results of droplet size distribution with this model agreed well with the experimental results of prefilming air-blast atomizers. With this model, the nonlinear relationship between the mean droplet diameters and droplet size distribution of the air-blast atomization process can be predicted exactly.  相似文献   

18.
A 58 kHz acoustic levitator was fitted with an infra-red thermography camera to examine the drying behaviour of water microdroplets at various drying-air temperatures. The evaporation rate was greater with larger initial droplet size at otherwise identical drying-air temperature (Tda). Measurement of droplet aspect ratio indicate that this is caused by differing acoustic field strengths. The measured droplet surface temperature in dry air showed no dependence on initial droplet size, but deviated from the wet bulb and also from the droplet temperature predicted by acoustic levitation theory. The degree of deviation of drying rate from that predicted by the d2-law using the wet bulb was dependent on Tda. Use of measured droplet surface temperature instead of the wet bulb gave, however, good agreement with the d2-law in dry air. No substantial effects of acoustic field streaming on drying rate could therefore be seen, even at the sound pressure levels of 106-165 dB used. Interpretation of evaporation rates of acoustically-levitated droplets requires therefore the measured droplet surface temperature.  相似文献   

19.
A supercritical antisolvent (SAS) process is employed for production of solid nanoparticles from atomized droplets of dilute solution in a flowing supercritical carbon dioxide (SC CO2) stream by attaining extremely high, very rapid, and uniform supersaturation. This is facilitated by a two‐way mass transfer of CO2 and solvent, to and from the droplet respectively, rendering rapid reduction in equilibrium solubility of the solid solute in the ternary solution. The present work analyses the degree of supersaturation and nucleation kinetics in a single droplet of cholesterol solution in acetone during its flight in a flowing SC CO2 stream. Both temperature and composition are assumed to be uniform within the droplet, and their variations with time are calculated by balancing the heat and mass transfer fluxes to and from the droplet. The equilibrium solubility of cholesterol with CO2 dissolution has been predicted as being directly proportional to the Partial Molar Volume Fraction (PMVF) of acetone in the binary (CO2–acetone) system. The degree of supersaturation has been simulated up to the time required to attain almost zero cholesterol solubility in the droplet for evaluating the rate of nucleation and the size of the stable critical nuclei formed. The effects of process parameters have been analysed in the pressure range of 7.1–35.0 MPa, temperature range of 313–333 K, SC CO2 flow rate of 0.1136–1.136 mol s?1, the ratio of the volumetric flow rates of CO2‐to‐solution in the range of 100–1000, and the initial mole fraction of cholesterol in acetone solution in the range of 0.0025–0.010. The results confirm an extremely high and rapid increase in degree of supersaturation, very high nucleation rates and stable critical nucleus diameter of the order of a nanometre. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Double emulsions created by phase inversion can be used for fast liquid–liquid separation; therefore, the coalescence behaviors of these types of multiple emulsions need to be predictable for different physical properties and drop size ratios. The aim of this study is to determine the influence of the effective overall drop diameter and the internal droplet size on the coalescence time and the coalescence behavior. Experimental investigations on the physical stability of single stagnant water-in-oil-in-water (W1/O/W2) double emulsion globules are performed. For this investigation, a formation device to inject one water droplet into an oil drop inside a water bulk phase is developed. The coalescence process of the sole internal water droplet floating on the O/W2 interface with the water bulk phase, often termed droplet expulsion or external coalescence, is recorded with a high speed camera. Based on image analysis, the diameters of the effective overall drop D, containing the oil and entrapped water volume, and the internal water droplet d are determined. Additionally, the coalescence time τ, including the time from the first contact of the internal droplet and the drop-bulk interface to the film rupture is measured. A large increase in coalescence time with increasing water droplet diameters is found. For the investigated paraffin oil–water system and initial drop sizes, partial coalescence occurs. In this case, the diameter ratio of daughter-to-mother droplet ψ is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号