首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
This article presents a model‐based control approach for optimal operation of a seeded fed‐batch evaporative crystallizer. Various direct optimization strategies, namely, single shooting, multiple shooting, and simultaneous strategies, are used to examine real‐time implementation of the control approach on a semi‐industrial crystallizer. The dynamic optimizer utilizes a nonlinear moment model for on‐line computation of the optimal operating policy. An extended Luenberger‐type observer is designed to enable closed‐loop implementation of the dynamic optimizer. In addition, the observer estimates the unmeasured process variable, namely, the solute concentration, which is essential for the intended control application. The model‐based control approach aims to maximize the batch productivity, as satisfying the product quality requirements. Optimal control of crystal growth rate is the key to fulfill this objective. This is due to the close relation of the crystal growth rate to product attributes and batch productivity. The experimental results suggest that real‐time application of the control approach leads to a substantial increase, i.e., up to 30%, in the batch productivity. The reproducibility of batch runs with respect to the product crystal size distribution is achieved by thorough seeding. The simulation and experimental results indicate that the direct optimization strategies perform similarly in terms of optimal process operation. However, the single shooting strategy is computationally more expensive. © 2010 American Institute of Chemical Engineers AIChE J, 57: 1557–1569, 2011  相似文献   

2.
We present a framework for the application of design and control optimization via multi‐parametric programming through four case studies. We develop design dependent multi‐parametric model predictive controllers that are able to provide the optimal control actions as functions of the system state and the design of the process at hand, via our recently introduced PAROC framework (Pistikopoulos et al, Chem Eng Sci. 2015;136:115–138). The process and the design dependent explicit controllers undergo a mixed integer dynamic optimization (MIDO) step for the determination of the optimal design. The result of the MIDO is the optimal design of the process under optimal operation. We demonstrate the framework through case studies of a tank, a continuously stirred tank reactor, a binary distillation column and a residential cogeneration unit. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

3.
This work considers the problem of controlling batch processes to achieve a desired final product quality subject to input constraints and faults in the control actuators. Specifically, faults are considered that cannot be handled via robust control approaches, and preclude the ability to reach the desired end‐point, necessitating fault‐rectification. A safe‐steering framework is developed to address the problem of determining how to utilize the functioning inputs during fault rectification to ensure that after fault‐rectification, the desired product properties can be reached upon batch termination. To this end, first a novel reverse‐time reachability region (we define the reverse time reachability region as the set of states from where the desired end point can be reached by batch termination) based MPC is formulated that reduces online computations, as well as provides a useful tool for handling faults. Next, a safe‐steering framework is developed that utilizes the reverse‐time reachability region based MPC in steering the state trajectory during fault rectification to enable (upon fault recovery) the achieving of the desired end point properties by batch termination. The proposed controller and safe‐steering framework are illustrated using a fed‐batch process example. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

4.
Variations in parameters such as processing times, yields, and availability of materials and utilities can have a detrimental effect in the optimality and/or feasibility of an otherwise “optimal” production schedule. In this article, we propose a multi‐stage adjustable robust optimization approach to alleviate the risk from such operational uncertainties during scheduling decisions. We derive a novel robust counterpart of a deterministic scheduling model, and we show how to obey the observability and non‐anticipativity restrictions that are necessary for the resulting solution policy to be implementable in practice. We also develop decision‐dependent uncertainty sets to model the endogenous uncertainty that is inherently present in process scheduling applications. A computational study reveals that, given a chosen level of robustness, adjusting decisions to past parameter realizations leads to significant improvements, both in terms of worst‐case objective as well as objective in expectation, compared to the traditional robust scheduling approaches. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1646–1667, 2016  相似文献   

5.
A strategy for controlling a fed‐batch Escherichia coli culture is described to maintain the culture at the boundary between oxidative and oxido‐fermentative regimes. A nonlinear predictive controller is designed to regulate the acetate concentration, constraining the feed rate to follow an optimal reference profile which maximizes the biomass growth. For the sake of simplicity and efficiency, the original problem is converted into an unconstrained nonlinear programming problem, solved by control vector parameterization techniques. The robustness of the structure is further improved by explicitly including the difference between system and model prediction. A robustness study based on a Monte Carlo approach is used to evaluate the performance of the proposed controller. This control law is finally compared to the generic model control strategy.  相似文献   

6.
Although strategic and operational uncertainties differ in their significance of impact, a “one‐size‐fits‐all” approach has been typically used to tackle all types of uncertainty in the optimal design and operations of supply chains. In this work, we propose a stochastic robust optimization model that handles multi‐scale uncertainties in a holistic framework, aiming to optimize the expected economic performance while ensuring the robustness of operations. Stochastic programming and robust optimization approaches are integrated in a nested manner to reflect the decision maker's different levels of conservativeness toward strategic and operational uncertainties. The resulting multi‐level mixed‐integer linear programming model is solved by a decomposition‐based column‐and‐constraint generation algorithm. To illustrate the application, a county‐level case study on optimal design and operations of a spatially‐explicit biofuel supply chain in Illinois is presented, which demonstrates the advantages and flexibility of the proposed modeling framework and efficiency of the solution algorithm. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3041–3055, 2016  相似文献   

7.
Coping with uncertainty in system parameters is a prominent hurdle when scheduling multi‐purpose batch plants. In this context, our previously introduced multi‐stage adjustable robust optimization (ARO) framework has been shown to obtain more profitable solutions, while maintaining the same level of immunity against risk, as compared to traditional robust optimization approaches. This paper investigates the amenability of existing deterministic continuous‐time scheduling models to serve as the basis of this ARO framework. A comprehensive computational study is conducted that compares the numerical tractability of various models across a suite of literature benchmark instances and a wide range of uncertainty sets. This study also provides, for the first time in the open literature, robust optimal solutions to process scheduling instances that involve uncertainty in production yields. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3055–3070, 2018  相似文献   

8.
In this work, we present a novel, data‐driven, quality modeling, and control approach for batch processes. Specifically, we adapt subspace identification methods for use with batch data to identify a state‐space model from available process measurements and input moves. We demonstrate that the resulting linear time‐invariant (LTI), dynamic, state‐space model is able to describe the transient behavior of finite duration batch processes. Next, we relate the terminal quality to the terminal value of the identified states. Finally, we apply the resulting model in a shrinking‐horizon, model predictive control scheme to directly control terminal product quality. The theoretical properties of the proposed approach are studied and compared to state‐of‐the‐art latent variable control approaches. The efficacy of the proposed approach is demonstrated through a simulation study of a batch polymethyl methacrylate polymerization reactor. Results for both disturbance rejection and set‐point changes (i.e., new quality grades) are demonstrated. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1581–1601, 2016  相似文献   

9.
A novel data‐driven approach for optimization under uncertainty based on multistage adaptive robust optimization (ARO) and nonparametric kernel density M‐estimation is proposed. Different from conventional robust optimization methods, the proposed framework incorporates distributional information to avoid over‐conservatism. Robust kernel density estimation with Hampel loss function is employed to extract probability distributions from uncertainty data via a kernelized iteratively reweighted least squares algorithm. A data‐driven uncertainty set is proposed, where bounds of uncertain parameters are defined by quantile functions, to organically integrate the multistage ARO framework with uncertainty data. Based on this uncertainty set, we further develop an exact robust counterpart in its general form for solving the resulting data‐driven multistage ARO problem. To illustrate the applicability of the proposed framework, two typical applications in process operations are presented: The first one is on strategic planning of process networks, and the other one on short‐term scheduling of multipurpose batch processes. The proposed approach returns 23.9% higher net present value and 31.5% more profits than the conventional robust optimization method in planning and scheduling applications, respectively. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4343–4369, 2017  相似文献   

10.
Exploring an internal heat source through bottom flashing route, this work introduces a dynamic batch column configuration within the framework of mechanical heat pump system. This batch rectifier with bottom flashing (BRBF) scheme attempts to use the reboiler liquid as a heat exchanging medium in the overhead condenser, thereby avoiding the use of any external coolant stream and reducing the consumption of hot utility in the reboiler. Aiming to operate the proposed transient process unit at an optimal state of energy use, we formulate an online open‐loop control policy that estimates the multiple control actions simultaneously. Furthermore, in order to achieve constant product purity, a gain‐scheduled closed‐loop control system is synthesized with keeping the stability margin constant. Simulating a multicomponent reactive system, the novel BRBF arrangement is evaluated in the aspects of energy savings and cost under both the open‐loop and closed‐loop control modes. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3699–3707, 2015  相似文献   

11.
This paper deals with the efficient computation of solutions of robust nonlinear model predictive control problems that are formulated using multi-stage stochastic programming via the generation of a scenario tree. Such a formulation makes it possible to consider explicitly the concept of recourse, which is inherent to any receding horizon approach, but it results in large-scale optimization problems. One possibility to solve these problems in an efficient manner is to decompose the large-scale optimization problem into several subproblems that are iteratively modified and repeatedly solved until a solution to the original problem is achieved. In this paper we review the most common methods used for such decomposition and apply them to solve robust nonlinear model predictive control problems in a distributed fashion. We also propose a novel method to reduce the number of iterations of the coordination algorithm needed for the decomposition methods to converge. The performance of the different approaches is evaluated in extensive simulation studies of two nonlinear case studies.  相似文献   

12.
Integration of scheduling and control results in Mixed Integer Nonlinear Programming (MINLP) which is computationally expensive. The online implementation of integrated scheduling and control requires repetitively solving the resulting MINLP at each time interval. (Zhuge and Ierapetritou, Ind Eng Chem Res. 2012;51:8550–8565) To address the online computation burden, we incorporare multi‐parametric Model Predictive Control (mp‐MPC) in the integration of scheduling and control. The proposed methodology involves the development of an integrated model using continuous‐time event‐point formulation for the scheduling level and the derived constraints from explicit MPC for the control level. Results of case studies of batch processes prove that the proposed approach guarantees efficient computation and thus facilitates the online implementation. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3169–3183, 2014  相似文献   

13.
A guaranteed cost control scheme is proposed for batch processes described by a two‐dimensional (2‐D) system with uncertainties and interval time‐varying delay. First, a 2‐D controller, which includes a robust feedback control to ensure performances over time and an iterative learning control to improve the tracking performance from cycle to cycle, is formulated. The guaranteed cost law concept of the proposed 2‐D controller is then introduced. Subsequently, by introducing the Lyapunov–Krasovskii function and adding a differential inequality to the Lyapunov function for the 2‐D system, sufficient conditions for the existence of the robust guaranteed cost controller are derived in terms of matrix inequalities. A design procedure for the controller is also presented. Furthermore, a convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the optimal guaranteed cost controller that minimizes the upper bound of the closed‐loop system cost. The proposed control law can stabilize the closed‐loop system as well as guarantee H performance level and a cost function with upper bounds for all admissible uncertainties. The results can be easily extended to the constant delay case. Finally, an illustrative example is given to demonstrate the effectiveness and advantages of the proposed 2‐D design approach. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2033–2045, 2013  相似文献   

14.
This work considers the control of batch processes subject to input constraints and model uncertainty with the objective of achieving a desired product quality. First, a computationally efficient nonlinear robust Model Predictive Control (MPC) is designed. The robust MPC scheme uses robust reverse‐time reachability regions (RTRRs), which we define as the set of process states that can be driven to a desired neighborhood of the target end‐point subject to input constraints and model uncertainty. A multilevel optimization‐based algorithm to generate robust RTRRs for specified uncertainty bounds is presented. We then consider the problem of uncertain batch processes subject to finite duration faults in the control actuators. Using the robust RTRR‐based MPC as the main tool, a robust safe‐steering framework is developed to address the problem of how to operate the functioning inputs during the fault repair period to ensure that the desired end‐point neighborhood can be reached upon recovery of the full control effort. The applicability of the proposed robust RTRR‐based controller and safe‐steering framework subject to limited availability of measurements and sensor noise are illustrated using a fed‐batch reactor system. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

15.
In the present work, we consider the problem of variable duration economic model predictive control of batch processes subject to multi‐rate and missing data. To this end, we first generalize a recently developed subspace‐based model identification approach for batch processes to handle multi‐rate and missing data by utilizing the incremental singular value decomposition technique. Exploiting the fact that the proposed identification approach is capable of handling inconsistent batch lengths, the resulting dynamic model is integrated into a tiered EMPC formulation that optimizes process economics (including batch duration). Simulation case studies involving application to the energy intensive electric arc furnace process demonstrate the efficacy of the proposed approach compared to a traditional trajectory tracking approach subject to limited availability of process measurements, missing data, measurement noise, and constraints. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2705–2718, 2017  相似文献   

16.
A novel two‐stage adaptive robust optimization (ARO) approach to production scheduling of batch processes under uncertainty is proposed. We first reformulate the deterministic mixed‐integer linear programming model of batch scheduling into a two‐stage optimization problem. Symmetric uncertainty sets are then introduced to confine the uncertain parameters, and budgets of uncertainty are used to adjust the degree of conservatism. We then apply both the Benders decomposition algorithm and the column‐and‐constraint generation (C&CG) algorithm to efficiently solve the resulting two‐stage ARO problem, which cannot be tackled directly by any existing optimization solvers. Two case studies are considered to demonstrate the applicability of the proposed modeling framework and solution algorithms. The results show that the C&CG algorithm is more computationally efficient than the Benders decomposition algorithm, and the proposed two‐stage ARO approach returns 9% higher profits than the conventional robust optimization approach for batch scheduling. © 2015 American Institute of Chemical Engineers AIChE J, 62: 687–703, 2016  相似文献   

17.
Design of experiments for identification of control‐relevant models is at the heart of robust controller design. In a number of prior publications, experiment designs have been developed that generate input/output data for efficient identification of models satisfying the integral controllability (IC) condition. The design of process inputs for such experiments is often, but not always, based on the concept of independent random rotated inputs, with appropriately proportioned amplitudes. However, prior publications do not account for models that may already be partially known before identification. In this work, this issue is addressed by developing a general experiment design framework for efficient identification of partially known models that must satisfy the IC condition. This framework produces optimal designs by solving appropriately formulated optimization problems, based on a number of rigorous theoretical results. Numerical simulations illustrate the proposed approach and potential future extensions are suggested. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2986–3001, 2016  相似文献   

18.
In model‐based optimization in the presence of model‐plant mismatch, the set of model parameter estimates which satisfy an identification objective may not result in an accurate prediction of the gradients of the cost‐function and constraints. To ensure convergence to the optimum, the predicted gradients can be forced to match the measured gradients by adapting the model parameters. Since updating all available parameters is impractical due to estimability problems and overfitting, there is a motivation for adapting a subset of parameters for updating the predicted outputs and gradients. This article presents an approach to select a subset of parameters based on the sensitivities of the model outputs and of the cost function and constraint gradients. Furthermore, robustness to uncertainties in initial batch conditions is introduced using a robust formulation based on polynomial chaos expansions. The improvements in convergence to the process optimum and robustness are illustrated using a fed‐batch bioprocess. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2660–2670, 2017  相似文献   

19.
In industry, it may be difficult in many applications to obtain a first‐principles model of the process, in which case a linear empirical model constructed using process data may be used in the design of a feedback controller. However, linear empirical models may not capture the nonlinear dynamics over a wide region of state‐space and may also perform poorly when significant plant variations and disturbances occur. In the present work, an error‐triggered on‐line model identification approach is introduced for closed‐loop systems under model‐based feedback control strategies. The linear models are re‐identified on‐line when significant prediction errors occur. A moving horizon error detector is used to quantify the model accuracy and to trigger the model re‐identification on‐line when necessary. The proposed approach is demonstrated through two chemical process examples using a model‐based feedback control strategy termed Lyapunov‐based economic model predictive control (LEMPC). The chemical process examples illustrate that the proposed error‐triggered on‐line model identification strategy can be used to obtain more accurate state predictions to improve process economics while maintaining closed‐loop stability of the process under LEMPC. © 2016 American Institute of Chemical Engineers AIChE J, 63: 949–966, 2017  相似文献   

20.
In order to deal with the I/O constraints in a practical plant, a soft limiter is often added into the control design procedure directly; however, the performance of the soft limiter based control approach will be degraded greatly due to the use of the soft constraints. This paper proposes a data‐driven optimal terminal iterative learning control (constraint‐DDOTILC) approach for the end product quality control of batch processes with I/O hard constraints. To deal with nonlinearities, a novel iterative dynamic linearization method without omitting any information of the original plant is introduced such that the derived linearized data‐driven model is completely equivalent to the original nonlinear system. By transferring all the constraints on the system output, control input, and the change rate of input signals into a linear inequality, a novel constraint‐DDOTILC is developed by minimizing an objective function under the derived linear matrix inequality constraint. The optimal learning gain of the constraint‐DDOTILC can be updated iteratively according to the input and output measurements to enhance the flexibility for modifications and expansions of the controlled plant. Both theoretical analysis and simulation results confirm the effectiveness of the proposed constraint‐DDOTILC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号