首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iron oxide supported oxygen carrier (OC) is regarded to a promising candidate for chemical looping combustion (CLC). However, phase separation between Fe2O3 and supports often occurs resulted from the severe sintering of supports during calcination, which leads to the sintering and breakage of Fe2O3 thus the decrease of redox reactivity. In this article, La‐promoted Fe2O3/α‐Al2O3 were used as OCs for CLC of CH4 and for the first time found that the OC with the addition of 18 wt % La exhibited outstanding reactivity and redox stability during 50 cycles of CLC of CH4. Such a superior performance originated from the formation of LaAl12O19 hexaaluminate (La‐HA) phase with not only small particle size but also excellent thermal stability at CLC conditions, which worked as a binder to prevent the phase separation thereby the sintering and breakage of active species α‐Fe2O3 were avoided during reaction. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2827–2838, 2017  相似文献   

2.
Oxygen carrier (OC) particles for chemical‐looping combustion (CLC) may be produced in large scale by a number of methods such as freeze granulation, spray drying, impregnation, and mechanical mixing methods. To select the most appropriate technology for large‐scale preparation, the four preparation methods were adopted to prepare Fe2O3/Al2O3 OCs and compared with each other in terms of productivity, preparation period, physical and chemical characterization, and reactivity in CLC of lignite. Freeze granulation and spray drying methods were found to be more suitable for large‐scale production of OCs for CLC. The results of the comparative studies may provide guidelines for selecting appropriate methods for preparing OCs on industrial scale.  相似文献   

3.
Fe‐substituted Ba‐hexaaluninates (BFA‐x (x = 1–3), x indicates Fe content) oxygen carrier (OC) were found to exhibit excellent sintering‐resistance under cyclic redox atmosphere at 800°C thanks to the reservations of the structure during the CH4 reduction step, thus preventing the agglomeration of particles during the subsequent reoxidation step. Lattice oxygen highly active for the total combustion of CH4 was observed in the hexaaluminate structure and its chemical state was influenced by Fe content. The highest amount of active O coordinated with Fe3+ in the mirror plane (O‐Fe3+(M)) for the total combustion was reacted (0.77 mmol/g) for BaFe3Al9O19 hexaaluminate OC. As a result, it exhibited the best reactivity with the CH4 conversion of 83% and CO2 selectivity of 100%. Moreover, superior regeneration and recyclability was also obtained, which originated from the fully recovery of O‐Fe3+(M) in the hexaaluminate structure. © 2015 American Institute of Chemical Engineers AIChE J, 62: 792–801, 2016  相似文献   

4.
A pollen‐like porous Fe2O3/Al thermite was prepared by a templated method, with aluminium nanoparticles (Al‐NPs) embedded in the porous channels. The thermite prepared by reduced pressure released the largest exothermic heat during DSC testing period compared with Fe2O3/Al thermites prepared by ultrasonic mixing and physical mixing. The exothermic heats in the range of 773 K to 1273 K are 3742.3 J g−1, 2279.0 J g−1, 1981.1 J g−1, and 2621.0 J g−1 for pollen‐like Fe2O3/Al by reduced pressure, pollen‐like Fe2O3/Al by ultrasonic mixing, pollen‐like Fe2O3/Al by physical mixing, and commercial Fe2O3/Al by ultrasonic mixing, respectively. The reactivity between Fe2O3 and Al‐NPs was efficiently improved, corresponding to its enlarged contact surface area between Al‐NPs and the porous pollen‐like Fe2O3, and the reduced pre‐combustion sintering. Furthermore, pollen‐like Fe2O3/Al has good compatibility with both RDX and HMX and it is not compatible with Cl‐20 and GAP.  相似文献   

5.
Oxygen‐carrier particles for chemical‐looping combustion have been manufactured by freeze granulation. The particles consisted of 60 wt % Fe2O3 as active phase and 40 wt % stabilized ZrO2 as support material. Ce, Ca, or Mg was used to stabilize the ZrO2. The hardness and porosity of the particles were altered by varying the sintering temperature. The oxygen carriers were examined by redox experiments in a batch fluidized‐bed reactor at 800–950°C, using CH4 as fuel. The experiments showed good reactivity between the particles and CH4. NiO was used as an additive and was found to reduce the fraction of unconverted CH4 with up to 80%. The combustion efficiency was 95.9% at best and was achieved using 57 kg oxygen carrier per MW fuel. Most produced oxygen carriers appear to have been decently stable, but using Ca as stabilizer resulting in uneven results. Further, particles sintered at high temperatures had a tendency to defluidize. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

6.
J. Mi  G. Feng  L. Han  T. Guo  Y. Zhu  J. Wang 《化学工程与技术》2012,35(9):1626-1631
Cerium oxide‐doped ZnFe2O4 sorbents supported on modified semi‐coke (MSC) were prepared to improve the desulfurization efficiency of zinc ferrites. The sulfidation tests of the ZnFe2O4/MSC sorbents with and without Ce were carried out using a fixed‐bed reactor at 450 °C. The effect of the CeO2/ZnFe2O4 molar ratio of the sorbents on the sulfur capacity was studied. The characteristics of the sorbents were analyzed by X‐ray diffraction, N2 adsorption, scanning electron microscopy and X‐ray photoelectron spectroscopy. The results showed that cerium oxide could greatly improve the desulfurization reactivity of the ZnFe2O4/MSC sorbents. The molar ratio of Ce to Zn and Fe influences the desulfurization reactivity, and a good sulfur capacity of the sorbent can be obtained with a Ce/Zn/Fe ratio of 4:4:1. It was also found that the addition of CeO2 could enlarge the surface area and the pore volume, thus improving the dispersion of active components. Ce doping results in an increment of the oxygen adsorbed on the sorbent surface, which facilitates the adsorption of H2S. The Ce ions could act as carriers of the oxidation and reduction reactions and the oxygen transfer could be accelerated during the desulfurization process of coal gas.  相似文献   

7.
Ultrafine well‐dispersed Fe3O4 magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The synthesis of Fe3O4/poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS), Fe3O4/poly (acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AM‐co‐AMPS) and Fe3O4/poly (acrylic acid‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AA‐co‐AMPS) ‐core/shell nanogels are reported. The nanogels were prepared via crosslinking copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid, acrylamide and acrylic acid monomers in the presence of Fe3O4 nanoparticles, N,N′‐methylenebisacrylamide (MBA) as a crosslinker, N,N,N′,N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H‐NMR spectra indicated that the compositions of the prepared nanogels are consistent with the designed structure. X‐ray powder diffraction (XRD) and transmission electron microscope (TEM) measurements were used to determine the size of both magnetite and stabilized polymer coated magnetite nanoparticles. The data showed that the mean particle size of synthesized magnetite (Fe3O4) nanoparticles was about 10 nm. The diameter of the stabilized polymer coated Fe3O4 nanogels ranged from 50 to 250 nm based on polymer type. TEM micrographs proved that nanogels possess the spherical morphology before and after swelling. These nanogels exhibited pH‐induced phase transition due to protonation of AMPS copolymer chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
铁基复合载氧体煤化学链气化反应特性及机理   总被引:4,自引:4,他引:0       下载免费PDF全文
程煜  刘永卓  田红景  郭庆杰 《化工学报》2013,64(7):2587-2595
以水蒸气作为气化/流化介质,在流化床中研究了两种铁基复合载氧体的化学链气化反应特性及循环特性,并对气化过程中的反应机理、动力学方程进行了推断。结果表明:温度为920℃时,添加不同修饰物的铁基复合载氧体与煤焦气化的反应活性依次为Fe4Al6K1>Fe4Al6>Fe4Al6Ni1。在多次循环实验过程中,合成气成分保持稳定,表明Fe4Al6K1复合载氧体循环特性良好。XRD谱图分析表明,六次氧化还原实验后的铁基载氧体氧化态仍为Fe2O3。K+主要以铁酸钾形态存在,该结构有利于促进化学链气化反应。利用高斯函数对气化反应速率进行了峰拟合,拟合结果表明化学链气化主要分为3个阶段:化学链作用阶段、煤气化阶段以及Fe3O4向FeO转变的气化阶段。  相似文献   

9.
In this study, we report template and surfactant‐free, low temperature (70°C) synthesis of needle‐like α‐FeOOH and its conversion at 400°C into α‐Fe2O3 nanorods using Fe(+2) and Fe(+3) chlorides and urea as a hydrolysis‐controlling agent. The isolated needle‐like α‐FeOOH indicates asparagus‐type growth pattern having length ca. 600 nm with 80 nm diameter at base and apex diameter of around 10 nm. The sample on heating (α‐Fe2O3) shows nanorod‐like morphology. The samples were characterized using various physicochemical characterization techniques such as XRD, Raman spectroscopy, UV‐Vis spectroscopy, particle size distribution analysis, Field Emission Scanning Electron Microscopy (FE‐SEM), and humidity sensing performance. The humidity sensing behavior of both α‐FeOOH and α‐Fe2O3 was studied. The α‐FeOOH shows quicker (10 s) and higher response toward change in humidity from 20%RH to 90%RH as compared with α‐Fe2O3 (60 s). Their typical morphology and crystalline structure plays an important role in humidity sensing behavior.  相似文献   

10.
Chitosan‐linked Fe3O4 (CL‐Fe3O4) is facilely prepared by electrostatic interactions between citrate‐capped Fe3O4 (C‐Fe3O4) (with negatively charged carboxylate groups) and chitosan oligosaccharide lactate (with positively charged amine groups), and utilized as anodes for lithium‐ion batteries. Inert‐atmosphere calcination of CL‐Fe3O4 at 400°C leads to the formation of chitosan‐tethered iron oxide composites (Fe2O3@chitosan) with an antisintering porous structure. As the calcination temperature changes from 400°C to 700°C, the size of primary particles increases from ca. 40 nm to ca. 100 nm, and the surface area decreases from 57.8 m2/g to 10.9 m2/g. The iron oxide composites exhibit a high discharge capacity and good rate performance. At a current density of 0.1 C after 50 cycles, Fe2O3@chitosan (400°C) exhibits a higher retention capacity of 732 mAh/g than those (544 and 634 mAh/g) of chitosan‐free Fe2O3 and Fe2O3@chitosan (700°C), respectively. The high performance of Fe2O3@chitosan (400°C) is attributed to the antisintering porous structure with high surface area that is beneficial for facilitating ion transport, demonstrating a useful chemical strategy for the direct formation of porous electrode materials at low calcination temperature.  相似文献   

11.
The kinetics of redox reactions of iron oxide in oxygen carrier 50Fe2O3/MgAl2O4 are examined using different time‐resolved techniques. Reduction kinetics are studied by H2 temperature‐programmed reduction (H2‐TPR) monitored by time‐resolved in situ XRD. In contrast to conventional TPR, in situ XRD distinguishes the three‐stage reduction of Fe2O3 → Fe3O4 → FeO → Fe. It also shows that the oxidation of Fe → Fe3O4 by CO2 has no intermediate crystalline phases, explaining why its kinetics can easily be investigated by conventional CO2 temperature‐programmed oxidation (CO2‐TPO). A shrinking core model which takes into account solid state diffusion allows describing the experimental data.  相似文献   

12.
This paper reports a study and discusses the role of Fe ions in the inhibition of corrosion of iron phosphate glasses. The structure of the 40Fe2O3–60P2O5 (mol%) glass, having a confirmed dissolution rate in aqueous solution at 90°C superior to borosilicate glasses, was investigated. Samples were crystallized at characteristic temperatures defined by differential thermal analysis and analyzed by X‐ray diffraction. Crystalline phases of Fe2Fe[P2O7]2 and Fe4[P2O7]3 were detected. The hyperfine parameters from the Mössbauer spectrum indicate that both Fe2+ and Fe3+ ions are in octahedral coordination, and 18% of the Fe3+ ions in the starting batch are reduced to Fe2+ ions after melting. The broad and symmetric spectra centered in g≈2.0 from the EPR measurements indicate the presence of two or more Fe interacting ions occupying sites of relatively high local symmetry.  相似文献   

13.
[(K0.43Na0.57)0.94Li0.06][(Nb0.94Sb0.06)0.95Ta0.05]O3 + x mol% Fe2O3 (KNLNST + x Fe, x = 0~0.60) lead‐free piezoelectric ceramics were prepared by conventional solid‐state reaction processing. The effects of small‐amount Fe2O3 doping on the microstructure and electrical properties of the KNLNST ceramics were systematically investigated. With increasing Fe3+ content, the orthorhombic‐tetragonal polymorphic phase transition temperature (TO‐T) of KNLNST + x Fe ceramics presented an obvious “V” type variation trend, and TO‐T was successfully shifted to near room temperature without changing TC (TC = 315°C) via doping Fe2O3 around 0.25 mol%. Electrical properties were significantly enhanced due to the coexistence of both orthorhombic and tetragonal ferroelectric phases at room temperature. The ceramics doped with 0.20 mol% Fe2O3 possessed optimal piezoelectric and dielectric properties of d33 = 306 pC/N, kp = 47.0%, = 1483 and tan δ = 0.023. It was revealed that the strong internal stress in the KNLNST + x Fe ceramics with higher Fe3+ contents (x = 0.40, 0.60) stabilized the orthorhombic phase, leading to the irregular “V” type rather than the usually observed monotonic phase transition with composition change in the ceramics.  相似文献   

14.
Monodisperse magnetite nanospheres with hollow interior structure were synthesized through one‐pot solvothermal process, in an isothermal environment at 200°C for 12 h, using a sole iron precursor (FeCl3.6H2O) and without any template. We demonstrated the development of hollow structure of magnetite spheres by characterizing systematically the changes of morphology and crystal structure for different processing times. We also provided the cross‐sectional images of the Fe3O4 spheres at different processing times to visualize the hollowing process inside the spheres with time. A detailed process mechanism to form the hollow structure of magnetite spheres was proposed, combining the formation of numerous tiny grains, the spherical assembly of those grains and the chemical conversion of the Fe (III) compounds to generate Fe3O4 simultaneously coupled with the Ostwald ripening process within the magnetite spheres. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3594–3600, 2013  相似文献   

15.
The effect of the reaction conditions on the grafting parameters during grafting of 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid onto sodium carboxymethylcellulose using H2O2/Fe+2 redox pair are studied at 30°C. The grafting ratio, add on, and conversion initially increase with the H2O2 concentration in the range of (10.0–15.0) × 10?2 mol dm?3. Thereafter, these parameters decrease with the H2O2 concentration. The grafting ratio, add on, and conversion increase when increasing the ferrous ion concentration from (0.5 to 4.0) × 10?2 mol dm?3 and decrease with a further increase in the concentration. It is observed that the grafting ratio and add on increase with the monomer concentration, whereas the conversion decrease. The hydrogen ions seem to be facilitating the grafting reaction up to a certain concentration and after this concentration seem to be retarding the process. The grafting ratio, add on, and conversion decrease with the sodium carboxymethylcellulose concentration. When increasing the time period from 60 to 90 min, the grafting parameters increase but decrease thereafter. Similarly, when increasing the temperature from 25 to 30°C, the grafting parameters increase and decrease thereafter. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4819–4825, 2006  相似文献   

16.
Red phosphorus was combined with metallic oxides Fe2O3 and MgO to improve the fire properties of recycled PET. Both Fe2O3 and MgO act as co‐synergist agents at a total loading of 5 wt%. The analysis by diffraction X of the char formed during combustion shows that transformation of Fe2O3 to Fe3O4 occurs. Fe2O3 favours the oxidation and improves the effectiveness of red phosphorus. It is suggested that MgO interacts with acidic end groups of PET and forms a thermal stable residue. The thermal decomposition of recycled PET containing red phosphorus combined with Fe and Mg oxides was studied by thermal analysis and leads to an increase in char formation. While the incorporation of Fe2O3 in this ternary blend maintains the mechanical properties of PET, the reactivity of MgO leads to a brittle material. The use of reinforcements (talc and glass fibres) to mechanically stabilize the char formed during combustion of ternary blend with Fe2O3 entails a further decrease in heat release rate, nevertheless impact resistance of the material decreases dramatically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This in situ soft X‐ray scanning microscopy electrochemical study of model proton exchange cathodic and anodic nano‐fuel cells is exploring the evolving structure and chemical composition of key cell components represented by Au and Fe electrodes in contact with Nafion‐ionic liquid composite electrolyte containing Pt black catalyst particles. Morphological and chemical changes of the electrodes as well as the chemical state and fate of the Fe species released into the electrolyte are monitored in short circuit and with applied cathodic or anodic polarization. The in situ X‐ray absorption images of the cathodic cell fed with 2.5 × 10–5 mbar O2 have revealed corrosion‐induced morphology changes in the Fe electrode, being more pronounced in the vicinity of Pt‐black particles, and deposition of the Fe species released into the electrolyte, onto the intact Au counter electrode upon cathodic polarization. The Fe electrodes of the anodic cell containing NaBH4 in the electrolyte appear relatively more corrosion resistant. The Fe L3 absorption spectra taken in different locations within the Fe electrode have shown lateral variations in the relative ratio between Fe2+ and Fe3&4+ oxidation states, whereas the Fe species released into the RTIL electrolyte are only in the high Fe3&4+ oxidation states.  相似文献   

18.
Some low temperature gas‐generating compositions, comprised of guanidine nitrate (GN), basic cupric nitrate (BCN), and ferric oxide (Fe2O3), were studied herein. The thermal decomposition properties and burning characteristics of GN/BCN/Fe2O3 mixtures were investigated by thermogravimetry/differential scanning calorimetry (TG/DSC), burning temperature measurements, automatic calorimetry, and X‐ray diffraction (XRD). This study showed that the maximum burning temperature of GN/BCN/Fe2O3 mixture (613 °C) was 31 % lower than that of GN/BCN mixture and the corresponding heat of combustion (2647 J g−1) decreased by 15 %. When the GN/BCN/Fe2O3 mixtures were burning, Fe2O3 did not directly react with GN but with Cu (or CuO), which was produced by reaction between GN and BCN. The combustion process of GN/BCN/Fe2O3 grains could be divided into four stages: pre‐heated, condensed, combustion, and cooling.  相似文献   

19.
Chemical looping partial oxidation of methane using a sole CO2 oxidant (CL‐POM‐CO2) is an emerging technology for synthesis gas generation and CO2 utilization, which is highly dependent on an oxygen carrier (OC). In this work, Fe‐substituted La‐hexaaluminate as the OC was found to exhibit good reactivity and stability during 50 periodic CH4/CO2 redox cycles due to the formation of magnetoplumbite La‐hexaaluminate structure with the introduction of La. Deeper reduction for synthesis gas generation did not destroy the La‐hexaaluminate structure via a charge compensation mechanism, which increased CH4 reactivity and further improved CO2 utilization under subsequent re‐oxidation. In the La‐hexaaluminate structure, O6‐Fe3+(Oh) was highly active for the total oxidation of methane, while O5‐Fe3+(Tr) and O4‐Fe3+(Th) selectively oxidized CH4 to synthesis gas. The sole CO2 oxidant only selectively recovered O5‐Fe3+(Tr) and O4‐Fe3+(Th), and thus is more favorable for improving synthesis gas selectivity than O2/air, which offers an attractive opportunity for CO2 utilization. © 2017 American Institute of Chemical Engineers AIChE J, 64: 550–563, 2018  相似文献   

20.
Phase evolution and morphology of Fe3O4‐Si‐Al powder mixtures during ball milling from 30 min to 20 h were investigated. A 3‐h critical milling was necessary for the occurrence of mechanically activated combustion reaction. The reaction results in the formation of Fe (Si), Fe3Si, and α‐Al2O3. During ball milling from 3 to 20 h, Fe (Si) and Fe3Si were combined into disordered Fe3Si intermetallic and Fe3Si‐Al2O3 composite powder was formed. The presence of in situ formed alumina leads to a decrease in crystallite and particle sizes. The Fe3Si‐Al2O3 particles after milling for 20 h had a crystalline size of 10~12 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号