首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Gas holdup and surface‐liquid mass transfer rate in a bubble column have been experimentally investigated. De‐mineralized water, 0.5 and 1.0% aqueous solutions of carboxy methyl cellulose (CMC), and 60% aqueous propylene glycol have been used as the test liquids. Effects of column diameter, liquid height to column diameter ratio, superficial gas velocity and liquid phase viscosity on gas holdup and mass transfer rate are studied. Generalized correlations for the average gas holdup and wall to liquid heat and mass transfer coefficients are proposed. These are valid for both Newtonian and pseudoplastic non‐Newtonian fluids.  相似文献   

2.
Using a light transmission optical probe, the effect of superficial gas velocity on bubble properties(bubble size, bubble rising velocity, bubble frequency and local gas holdup) at axial and radial positions was determined in the riser and the downcomer of a concentric cylindrical airlift reactor. The vertical bubble length, the bubble rising velocity and the bubble frequency at axis in the riser increased with increasing superficial gas velocity and the bed height. The radial distribution of the local gas holdup, vertical bubble length and bubble frequency in the riser and the downcomer were found to be non-uniform. The profiles of the local gas holdup, vertical bubble length and bubble rising velocity in the riser were shown as parabolic shapes. The local gas holdup, the vertical bubble length and the bubble frequency in the downcomer changed with superficial gas velocity and the distance from the top of the draft tube.  相似文献   

3.
The local hydrodynamic properties of the gas phase in an internal-loop airlift reactor were investigated in this study. The hydrodynamic properties including gas holdup, bubble velocity and bubble chord length were measured by dual electrical resistivity probes. The chord length distribution was then transformed to the bubble size distribution by modeling the bubbles as ellipsoids. It was found that the gas holdup increased with decreasing bubble velocity. In addition, most bubbles tended to rise along the riser central axis. Thus, the gas holdup in the axis was higher. The bubble size, bubble velocity and gas holdup were relatively constant in the axial direction of the riser except in the zones near the gas sparger and the gas–liquid separator. The bubble velocity became slower when the bubbles approached the gas–liquid separator. Moreover, the bubble size and bubble velocity for the three-phase system were relatively insensitive to the radial direction compared to those for the two-phase system. It was also found in this study that the bubble rise velocity and bubble size for the three-phase system were lower than that for the two-phase system. However, the gas holdup for the three-phase system were higher than that for the two-phase system due to bubble breakage caused by the solid particles.  相似文献   

4.
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.  相似文献   

5.
Multiphase flow hydrodynamics in a novel gas–liquid–solid jet-loop reactor (JLR) were experimentally investigated at the macroscales and mesoscales. The chord length distribution was measured by an optical fiber probe and transformed for bubble size distribution through the maximum entropy method. The impacts of key operating conditions (superficial gas and liquid velocity, solid loading) on hydrodynamics at different axial and radial locations were comprehensively investigated. JLR was found to have good solid suspension ability owing to the internal circulation of bubbles and liquid flow. The gas holdup, axial liquid velocity, and bubble velocity increase with gas velocity, while liquid velocity has little influence on them. Compared with the gas–liquid JLRs, solids decrease the gas holdup and liquid circulation, reduces the bubble velocity and delays the flow development due to the enhanced interaction between bubbles and particles (Stokes number >1). This work also provides a benchmark data for computational fluid dynamics (CFD) model validation. © 2019 American Institute of Chemical Engineers AIChE J, 65: e16537, 2019  相似文献   

6.
为了解浆态床鼓泡反应器中气含率的分布规律,在浆态床鼓泡反应器冷模试验装置中,以空气-液体石蜡-氧化铝微球为试验介质对装置内部的气含率进行研究。利用压差法研究了表观气速、浆液固含量等操作条件对反应器床层总体气含率的影响,利用光纤探针法研究了浆态床反应器不同操作条件对局部气含率的影响,总结了反应器内部气含率的分布规律,并由此对工业浆态床鼓泡反应器的设计进行了研究。结果表明:浆态床反应器的总体气含率随表观气速的增大而增大,固体细颗粒的加入能适当降低总体气含率;在反应器底部,分布器对气体的均布作用明显,但表观气速的增大能够弱化分布器的作用;在反应器的中上部气含率不受分布器的影响,沿反应器径向呈现"中间高,边缘低"的分布趋势;在工业费托浆态床中,表观气速不宜低于0.12 m/s,内过滤系统适宜设置于反应器中上部靠近器壁的位置。  相似文献   

7.
Time-dependent gas holdup variation in a two-phase bubble column is reported with air and tap water as the working fluids. The results indicate that time-dependent gas holdup is closely related to the water, whose quality is unsteady and changes, not only during the two-phase flow, but also during idle periods. The significance and characteristics of the time-dependent gas holdup variation are influenced by the bubble column operation mode (cocurrent or semi-batch), the sparger orientation, the superficial gas velocity, and the superficial liquid velocity. It is proposed that a volatile substance (VS), which exists in the water in very small concentrations and inhibits bubble coalescence, evaporates during column operation and results in a time-dependent gas holdup. The influence of bubble column operation mode, sparger orientation, superficial gas velocity, and superficial liquid velocity on the time-dependent gas holdup variation are explained based on their effects on bubble size, bubble contacting frequency and mixing intensity. This work reveals that regular tap water may cause significant reproducibility problems in experimental studies of air-water two-phase flows.  相似文献   

8.
As the hydrodynamic behavior in bubble columns is difficult to characterize, computational fluid dynamics (CFD) is a useful alternative tool for research and design. An experimental and computational analysis of the macromixing and gas holdup of a bubble column indicates that 3D simulations with CFD using an Eulerian‐Eulerian approximation yield results of the overall velocity field and gas holdup distribution that are suitable for engineering design purposes. Particularly, CFD simulations uncover that the inclusion of concentric solid plates into a bubbling column increase the gas holdup by 79 % and the mixing time by 48 % when compared with a column without plates operating at similar superficial gas velocities.  相似文献   

9.
Including internals in bubble columns is known to enhance the gas holdup. In this paper, a method to achieve this objective substantially has been proposed via the use of vibrating helical spring internals. Experimental observations on effect of vibrating internals such as vibrating helical springs on gas holdup in bubble columns are presented. Effects of superficial gas velocity, H/D ratio (height of the static liquid to column diameter ratio), volume fraction of helical springs, and thickness of the helical spring wires on hydrodynamics parameters are studied. Increase in gas holdup up to 135% is observed by using vibrating helical spring internals in bubble columns compared to bubble columns without internals. This method offers a simple, cost‐effective, and easy way to enhance gas holdup even at high gas fluxes. It has been reported that this enhancement stems from the fact that the vibrating springs breakup the gas into fine bubbles, which effectively reduces their rise velocity and enhances their average residence time in the liquid column.  相似文献   

10.
浆料鼓泡塔反应器部分流体力学参数研究综述   总被引:5,自引:0,他引:5  
本文综述了浆料鼓泡塔反应器的主要流体力学参数-流域,气泡的大小和上升速度,相含率和固定颗粒悬浮的临床气速等-的测定和影响因素。简要介绍了国外采用的汉体力学参数测定方法-动态气体逸出法。  相似文献   

11.
Total and sectional gas-phase holdups are measured in a wide (0.305 m internal diameter) and long (3.7 m) glass bubble column al ambient conditions as a function of superficial gas velocity. Sectional gas holdup values vary along the length of the column and decrease as the height above the gas distributor plate increases in the transitional and turbulent flow regimes. In the discrete bubbling regime, the values are fairly constant in most of the column length except for a small lower portion where the values are significantly smaller than in the rest of the column. This is due to the formation of gas jets at the orifices of the distributor plate. The holdup values are dependent only on the mangitude of gas velocity and do not depend upon how it is approached, i.e., by increasing or decreasing the flow, in the turbulent-flow regime. This is not the case in the discrete and transitional gas-flow regimes. These characteristic variations in gas holdup are explained on the basis of the formation of bubbles in the lower region of the column and their growth by bubble coalescence prior to acquiring a stable bubble size.

Limited experimental data for the three-phase system (air-water-glass beads) indicate that gas holdup decreases as the concentration of glass beads is increased in the mixutre. This is attributed to the increased buoyancy effect in the presence of glass beads which increases the upthrust and hence the bubble velocity which results in the decrease of gas holdup. Total gas holdup data as a function of superficial gas velocity are compared with the predictions of four commonly used correlations and are also analysed in terms of the sectional measured gas-phase holdup data. The inferences that follow are significant.  相似文献   

12.
实验测定了低气速下CO2气泡群在牛顿流体、剪切变稀流体及黏弹性流体中的气含率。讨论了流体的流变性、质量分数及表观气速对气含率的影响。结果表明:在3种不同性质的流体中,气含率均随表观气速的增大而增大。同时发现流体性质对气含率具有不同的影响:对于牛顿流体,表观气速较低时,质量分数对气含率影响可忽略;对于非牛顿流体,气含率随着流动指数n的减小而减小,即剪切变稀效应对气含率有负作用,而黏弹性对气含率的影响可忽略。气含率是气液传质过程设计中最重要的参数,因此研究结果为进一步研究CO2气泡群在非牛顿流体中的传质奠定了一定基础。  相似文献   

13.
This work presents experimental data on gas holdup in slurry bubble columns with a foaming liquid. The effects of solids concentration, solid particle size, superficial phase velocities and column dimensions on the gas holdup are analyzed. At low superficial gas velocities (less than 4cm/s), for which the liquid does not foam, the presence of solids with small particle size does not affect the gas holdup whereas solids with large particle size induce foam formation and thus their presence increases the gas holdup. In the foaming regime, an increase of solids concentration decreases the gas holdup. The operating mode has a strong effect on the gas holdup: the semi-batch operating mode (stagnant liquid-solid suspension) increases the ability of the liquid to foam with respect to the continuous mode. Regarding the effect of column dimensions, the results presented show that the height of the bubble column does not affect at an appreciable extent the gas holdup in the range 6 < LID < 12. At high gas velocities (greater than 6 cm/s) the gas holdups obtained in a 30 cm-internal diameter column are the same as those measured in a 10 cm-internal diameter column.  相似文献   

14.
To determine bubble rising and descending velocity simultaneously, a BVW‐2 four‐channel conductivity probe bubble parameters apparatus and its analysis are used in gas‐liquid and gas‐liquid‐solid bubble columns. The column is 100 mm in internal diameter and 1500 mm in height. The solid particles used are glass beads with an average diameter of 17.82 μm, representing typical particle size for catalytic slurry reactors. The effects of superficial gas velocity (1.0 cm/s ≤ Ug 6.4 cm/s), solid holdup (0 % ≤ ?s 30 %), and radial location (r/R = 0, 0.4, and 0.7) on bubble velocity distributions are determined. It is found that increasing Ug can increase the velocity of bubbles but do not exert much influence on bubble velocity distribution. Solid holdup mainly affects the distribution of bubble velocity while the radial direction affects bubble velocity distribution only slightly. The ratio of descending bubbles to rising bubbles increases from the bubble column center to the wall. It can be proved experimentally that large bubbles do not always rise faster than small bubbles at higher Ug (for example 6.4 cm/s).  相似文献   

15.
The bubble properties in the column flotation system are deeply affected by the bubble-generator type, frother dosage, and superficial gas velocity. This study is to determine the bubble-generator type, which effectively produces micro-bubbles to affect the flotation efficiency. Characteristics for two types of bubble generators like the in-line mixer and sparger are examined by bubble properties such as bubble diameter, holdup and bubble velocity. Micro bubbles generated from an in-line mixer result in the increase of the bubble rising velocity and gas holdup. Bubbles produced at the in-line mixer were more effective for operating the flotation system than that of the sparger. It means that the in-line mixer bubble generator is more effective than a sparger in designing or operating the column flotation system.  相似文献   

16.
Local bubble behaviours were investigated in three bubble columns with different diameters of 200, 400 and 800 mm. By means of a novel single‐tip optical fibre probe employing laser Doppler technique, the local gas holdup, bubble frequency, bubble size and velocity were measured simultaneously at different locations of the columns. Measurements were performed in air‐water system at superficial gas velocities up to 90 mm/s. The averaged profiles and instantaneous measurements were analyzed and compared for different columns. The presence of a coherent gross circulation structure spanning the entire column diameter in the larger column rather than a pair of symmetrical circulation cells observed in the smaller columns has been confirmed.  相似文献   

17.
A simple model based on an energy balance which takes into account the friction losses at the gas-liquid interface and the slip velocity of single bubble is used to simulate the gas holdup in bubble columns containing Newtonian and non-Newtonian liquids which circulate in both laminar and turbulent flows. Experimental data available from the literature for bubble columns up to 7 m height and 1 m diameter with water and glycerol as Newtonian liquids and different solutions of CMC in a wide range of concentrations as non-Newtonian liquids are simulated with good agreement despite the simplifications made to describe the gas liquid flow regimes. Most of the differences between experimental and calculated gas holdup are justified on the basis of the simplifying assumptions.  相似文献   

18.
王丽军  张煜  李希 《化工学报》2008,59(12):2996-3002
对高气速、高固含率、大塔径条件下的湍动浆态床平均气含率和气含率径向分布进行了实验测定,结合工业实验数据,归纳出可用于工业条件的气含率计算关联式,给出了简化的流体力学模型用于气含率分布的模拟。结果表明,浆态床气含率将随塔径增加而降低,固含率与塔径之间存在交互影响;同时,气含率的径向分布也随气速和塔径的增大而改变,存在明显的放大效应,简化模型能够较好地模拟实验结果。  相似文献   

19.
计算流体力学与群体平衡模型(CFD-PBM)结合可有效地模拟鼓泡塔内流体行为,较准确地预测流场、相含率以及局部气泡尺寸分布。以直径100 mm、高1.3 m的加温加压鼓泡塔为模拟对象,在系统压力为1 MPa、表观气速为0.08~0.24 m/s、温度为30~160℃条件下系统地考察了空气-水体系的表观气速、温度以及固含率对平均气含率、大小气泡气含率、气泡直径和气泡尺寸分布等参数的影响。结果表明,平均气含率的模拟结果和实验值在10%的误差范围内吻合较好;温度的变化主要影响了塔内气泡的聚并和破碎,并用聚并破碎的机理解释了温度对其流体行为的影响。  相似文献   

20.
The hydrodynamic behavior of a single‐stage tapered bubble column using an air‐water two‐phase system has been studied. The experimental results indicate that the holdup increases with increasing superficial gas velocity and bubble slip velocity, while it remains constant with increasing superficial liquid velocity. The gas flow rate has a subtle effect on pressure drop owing to the dynamic pressure recovery stemming from the increase in flow area in the axial direction. The results further suggest that the tapered bubble column shows higher holdup with lower energy dissipation than the conventional bubble columns under similar hydrodynamic conditions. The experimental values of the holdup are in excellent agreement with the well‐known Akita and Yoshida correlation available in the existing literature. Also, the performance of the tapered system has been shown to be much better than that of conventional columns under similar conditions in water/alkaline scrubbing of fly ash and SO2 either alone or in combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号