首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
氨氮是污染水体的重要污染物,水体中氨氮含量超标,不仅使水环境质量恶化,造成水体富营养化,破坏生态环境,还严重危害人类健康和动植物的生存。高浓度(〉0.5g/L)无机氨氮废水,主要是由化肥广各工序产生的,废水中含铵盐质量浓度达0.05%~3%,这种高浓度无机氨氮废水,呈酸性,腐蚀性强,常用的处理方法处理很困难,如生物氧化法,只能处理不超过0.5g/L铵盐废水。  相似文献   

2.
回收氨氮废水用水处理技术的研究进展   总被引:1,自引:0,他引:1  
王方  王明亚  王明太 《当代化工》2011,(12):1277-1282
介绍了回收氨氮废水用各种水处理技术的原理和应用情况,并做了简要的评述,这些水处理技术有:折点氯化法、生物法、离子交换法、吹脱法、化学沉淀法和膜法等.在介绍回收氨氮废水用膜法水处理技术时,着重介绍电去离子膜法,该法是作者最近所发明的.  相似文献   

3.
介绍了采用膜集成技术--微滤/超滤/反渗透,在实验室规模处理磷肥厂氨氮废水.实验结果表明:在进水浊度20FTU~100FTU条件下,微滤/超滤产水浊度<0.5FTU,其出水浊度优于传统预处理出水;反渗透在进水电导率4~12ms/cm,氨氮含量为230mg/L~900mg/L条件下,出水氨氮含量<3mg/L,远远低于国家排放标准10mg/L;同时,浓水可回用到磷铵生产工艺中,淡水可用作工艺补充水或排放.  相似文献   

4.
膜法处理高浓度氨氮废水的研究   总被引:15,自引:0,他引:15  
采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可取得良好的效果。电渗析法处理氨氮废水,浓度2000~3000mg/L,氨氮去除率可在85%以上,同时可获得8.9%的浓氨水。此法工艺流程简单、投资省、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。PP中空纤维膜法脱氨效率≥90%,回收的硫酸铵浓度在25%左右。此法工艺流程短、技术先进、省电,无二次污染,运行中需加碱,加碱量与废水中氨氮浓度成正比。  相似文献   

5.
近两年来,膜法回用石化废水备受重视,利用集成膜技术对炼油和乙烯化工废水进行深度回用处理,目前已有相对成熟的经验,但集成膜技术用于精细化工产品精对苯二甲酸废水回用处理的研究尚少。在试验基本工况为超滤系统采用全量过滤方式,运行周期30min,内压式超滤运行通量不大于75L/(m2.h),超滤系统前加入絮凝剂PAC(投加量为5mg/L),低污染反渗透膜运行通量不大于19L/(m2.h),试验中系统回收率为70%,反渗透进水的COD含量小于40mg/L的条件下,精对苯二甲酸达标废水深度回用处理稳定运行,产水水质稳定可靠。  相似文献   

6.
回收重金属废水用电去离子技术研究进展   总被引:1,自引:1,他引:0  
电去离子(EDI)技术是由电渗析和离子交换相互有机结合的膜分离脱盐技术.其具有连续运行、不用酸碱、环境友好等显著优点.作者介绍了国内外采用电去离子技术回收含铜和含镍废水的研究进展,针对重金属废水的特点,设计了以阳树脂为主的阴、阳树脂分层填充的电去离子装置,采用该技术代替传统的离子交换技术,可实现重金属废水的回收和利用.达到闭路循环、零排放、无污染的目的.  相似文献   

7.
回收重金属废水用电去离子(EDI)技术,是一项电渗析和离子交换相互有机结合的膜分离脱盐技术。具有连续运行、无人值守、不用酸碱、环境友好等显著优点。介绍了国内外几项用于回收含铜和含镍废水的研究进展,针对重金属废水的特点,设计了以阳树脂为主的阴、阳树脂分层填充的装置,采用这种技术,代替传统的离子交换技术,可实现重金属废水的回收和利用,达到闭路循环,零排放,无污染。  相似文献   

8.
针对目前用电渗析法处理硝酸铵废水的现象,提出以电去离子处理作为硝酸铵废水深度处理,弥补现有电渗析处理的不足,达到硝酸铵废水处理系统"零排放",做到废水资源化利用,硝酸铵和水全部回收。这种改良型电渗析处理方法,除可使浓水中氨氮的质量分数达10%以上外,系统出水氨氮的质量浓度小于或等于5 mg/L。  相似文献   

9.
针对目前用电渗析法处理硝酸铵废水的现象,提出以电去离子处理作为硝酸铵废水深度处理,弥补现有电渗析处理的不足,达到硝酸铵废水处理系统"零排放",做到废水资源化利用,硝酸铵和水全部回收。这种改良型电渗析处理方法,除可使浓水中氨氮的质量分数达10%以上外,系统出水氨氮的质量浓度小于或等于5 mg/L。  相似文献   

10.
膜集成技术浓缩稀土废水中的氯化铵   总被引:1,自引:0,他引:1  
经预处理的稀土氯化铵废水通过反渗透浓缩,氯化铵浓度从1.5%(w/w)提高到5~6%(w/w),膜对氯化铵的脱除率为90%左右.水的回用率达60%左右。通过电渗析进一步浓缩,氯化铵浓度可达10~12%(w/w)。  相似文献   

11.
氨氮废水处理技术研究进展   总被引:6,自引:0,他引:6  
概括了氨氮废水的生物法、吹脱法、化学沉淀法、折点氯化法、膜分离法、离子交换法、氧化法等常用处理方法,并分析了其影响因素,介绍了氨氮废水处理技术的研究现状,根据实际工程要求,系统分析了各种氨氮废水处理方法存在的问题和发展趋势,为氨氮废水处理技术的应用提供参考。研究表明,在氨氮废水的预处理和深度处理阶段联合使用多种氨氮处理方法,能够得到较好的脱除效果。  相似文献   

12.
固定化微生物法处理含氨氮废水   总被引:1,自引:0,他引:1  
耿振香  邱新发 《应用化工》2007,36(9):933-935
采用聚乙烯醇-硼酸包埋固定从活性污泥中筛选的硝化菌和反硝化菌,对生活污水进行硝化反硝化工艺处理,当废水中氨氮浓度为45 mg/L,pH值为7.5,DO为2.0 mg/L,水力停留时间为18 h,氨氮去除率可达96%。  相似文献   

13.
介绍了某生物工程厂采用厌氧工艺(循环式颗粒污泥反应器,即MQIC反应器)、氨氧化工艺和絮凝沉淀池处理厂区生产废水,处理量为10 000 m3/d,该工艺系统对原水中COD、NH4+-N、TN的去除率分别可达97%、98%、90%,运行稳定,整个工艺处理出水水质可达到园区接管要求。同时,对厂区MQIC反应器和氨氧化工艺的启动调试进行了阐述,实践证明该工艺系统对处理高氨氮有机废水效果显著。  相似文献   

14.
分别以平板Ti/SnO_2网状电极和石墨为阳极和阴极,制作隔膜和无隔膜电解反应器并对比处理500mg/L自配氨氮溶液。在处理水量为3.6 L,电流密度为10 m A/cm2,有效阳极面积为1 440 cm~2,电流为0.8 A,反应时间70 min条件下,出水氨氮分别为74、222 mg/L,去除率分别为85.2%、55.6%;当两种反应器吨水电耗均为10.5k W·h时,出水氨氮分别为74、153 mg/L,去除率分别为85.2%、69.4%。在出水氨氮相同时,隔膜电解反应器在吨水电耗、电流效率以及反应速率方面均优于无隔膜电解反应器。  相似文献   

15.
采用三维电极法处理高浓度氨氮废水,无需调节废水p H,控制电压14 V,加入200 g粒子颗粒电极,电解反应2 h,出水调节p H至9,过滤,出水NH3-N15 mg/L,满足《污水综合排放标准》(GB 8978—1996)中的一级标准,为高浓度氨氮废水的处理探索了新途径,具有广阔的工业应用前景。  相似文献   

16.
氯化法钛白无机包膜处理工序会产生大量中性废水,其中包含少量钛白粉和水溶性盐,现阶段企业多以外排为主。采用膜集成(陶瓷膜+反渗透膜+纳滤膜)技术对氯化法钛白后处理废水的处理进行研究。将氯化法钛白后处理废水用陶瓷膜过滤,分离回收二氧化钛;将陶瓷膜清液用反渗透膜浓缩,清水回收利用;将反渗透浓液用纳滤膜分离硫酸钠和氯化钠。结果表明:利用陶瓷膜处理氯化法钛白后处理废水,平均通量为650 L/(m 2·h),浓液中钛白粉质量浓度达到90 g/L以上,清液中钛白粉质量浓度低于0.001 g/L;使用反渗透膜截留清液中的硫酸钠和氯化钠,硫酸钠和氯化钠的截留率为99.5%,浓水中的盐质量分数达到4%以上;浓水中的硫酸钠和氯化钠通过纳滤膜分离,纳滤膜对硫酸钠的截留率为97%,硫酸钠质量分数达到14%以上。  相似文献   

17.
采用柱式光合反应器对藻类去除煤气化废水的氨氮及总氮开展了探索性实验研究。实验结果表明:优化条件下,四尾栅藻、斜生栅藻、混合藻(黄丝藻和席藻)都在3 d内完全去除氨氮,同时总氮去除率都在第5天达到最大,分别是四尾栅藻86.02%,斜生栅藻83.33%,混合藻71.81%。说明选用合适的藻类去除煤气化废水的氨氮及总氮可行,同时相比生物硝化/反硝化脱氮工艺该方法具有一定的新颖性。  相似文献   

18.
近年来,氨氮已成为影响我国地表水水环境质量的首要指标。"十二五"期间,氨氮是污染物控制的重点。采用微波技术处理高浓度氨氮废水具有明显效果。简要评述了高浓度氨氮废水的处理方法,介绍了微波加热原理,重点总结了各种微波技术处理高浓度氨氮废水的研究现状及其主要影响因素。指出需进一步研究机理、催化剂和成套设备研发等方面,以期早日实现工业化应用。  相似文献   

19.
工业废水中氨氮处理方法比较分析   总被引:1,自引:0,他引:1  
氨氮已作为我国"十二五"水污染控制约束性指标。针对含氨氮废水进行处理,并实现达标排放是当前研究的热点。基于已有的实际工业废水处理应用案例,对比分析了吹脱法、吸附法、化学沉淀法、折点氯化法、生物脱氮法等处理工业氨氮废水的适用条件(进水氨氮浓度、处理时间、温度、pH等)和处理效果,并总结了不同处理方法的工艺特点及其优缺点,可以为氨氮废水处理工艺和参数选择提供参考。  相似文献   

20.
李慧  王开厅  孔祥帅  刘友林 《化工进展》2019,38(z1):247-251
采用膜分离技术对航天废水进行深度净化,整机净化流程为多段梯度过滤,预处理为微米级砂滤及臭氧曝气,经氧化沉淀后的水再经过超滤(UF)处理,此时的出水已可回用于一般冲洗用途;随后,在反渗透(RO)装置中将UF系统的出水再进行深度净化,水质中化学需氧量(COD)、氨氮和偏二甲基肼浓度分别为:< 10mg/L、4.4mg/L和<0.5mg/L,可回用于较高用途。废水深度净化后,污染物被吸附于膜表面,RO膜出现压差不断增加、产水量减少、产水电导略微上升的现象。膜清洗选用0.8mol/L的NaOH和0.5%的84消毒液的混合液作为清洗剂,浸泡28h后清洗效果最佳。实验结果表明膜分离深度净化航天废水工艺的技术可行,经济效益可观,绿色环保,实现了循环经济,可降低航天废水对环境的污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号