共查询到20条相似文献,搜索用时 10 毫秒
1.
首先,介绍了近年来出现的5种较为典型的离散PSO,并分析了它们与基本PSO 之间的联系和区别;然后,归纳了提高离散PSO 优化性能的若干途径,并总结了离散PSO 的应用现状;最后,探讨了离散PSO 有待进一步研究的若干方向和内容. 相似文献
2.
提出一种针对部分较优微粒进行退火操作的精英退火微粒群算法.在退火操作中,结合Logistic方程的特点设计了一种新的错位调整方式,对当前已知最优区域重点搜索.该算法能增强算法的探索和开发能力,避免计算量过度增加.典型测试函数结果显示,该方法可同时提高算法的搜索速度和搜索精度.将基于该方法的PID控制器应用于发电机电压调节系统(AVR)计算结果表明,该PID控制器可以获得更为满意的控制性能指标. 相似文献
3.
提出一种新的模糊粒子群优化算法---收敛模糊粒子群优化算法.重点研究了收敛因子的确定和模糊隶属度函数的选择对算法性能的影响.在考虑计算效率的同时,提高了算法的精度.利用4个基准函数测试了收敛模糊粒子群优化算法的性能,并与模糊粒子群优化算法$收敛粒子群优化算法以及基本粒子群优化算法进行了对比.实验结果表明#新算法具有很好的性能. 相似文献
4.
微粒群算法的全局搜索性能容易受到局部极值点的影响.对此,提出一种基于栅格的动态粒子数微粒群算法(GB-DPPPSO).通过设计栅格信息更新策略,粒子产生策略和粒子消灭策略,可以根据种群搜索情况动态控制粒子数变化,以保持种群多样性,提高全局搜索性能.通过对4个典型数学验证函数的仿真实验,表明了该算法相对于DPPPSO在全局搜索成功率和搜索效率两方面均有明显改进. 相似文献
5.
适应性粒子群寻优算法Ⅰ(APSO-Ⅰ)是在有序的决策中始终引入随机的,不可预测的决定.为解决APSO-Ⅰ算法收敛深度不够的问题,提出适应性粒子群寻优第Ⅱ代算法(APSO-Ⅱ).APSO-Ⅱ算法是将有序(标准PSO粒子群寻优)和无序(自适应寻优)进行适当的分离,以发挥各自的优势.在自适应寻优阶段,通过在最优粒子邻域空间探寻更优化的解,一但新的优化解被发掘,便利用标准PSO快速寻优.典型复杂函数优化的仿真结果表明,APSO-Ⅱ在收敛速度和收敛深度上均优于DPSO(耗散型PSO),HPSO(自适应层次PSO),AEPSO(自适应逃逸PSO)和APSO-Ⅰ. 相似文献
6.
将动态交通分配实施过程纳入预测控制框架下以满足实时交通诱导的目的,提出一种交通诱导预测控制算法.该算法是在滚动时域基础上进行的,包括实时交通分配、交通流模拟运行及评价以及进化最佳路径3 个重要环节.仿真结果表明,交通诱导预测控制是一种良好的计算机控制方法学,其优化过程预先考虑了目前交通分配对未来路网的影响,因而可有效地防范交通拥堵,实现考虑反馈的路网交通流实时分配优化,同时为出行者提供最佳路径. 相似文献
7.
在实际决策过程中,决策者可能并不需要完全获悉所有的决策方案,而是只对一些特定方案产生兴趣,对此,提出指定目标间重要关系和给定目标空间参考点情况下的多目标微粒群优化算法.以格栅作为解的多样性保持策略,对于给定目标间重要关系的偏好信息,可以获得特定区域的多个解;对于给定参考点的偏好信息,可以同时获得多个特定区域中的多个解,有利于决策者进行更有效的决策.通过对典型测试问题的仿真实验,验证了本算法的正确性和有效性. 相似文献
8.
通过两组搜索方向相反,相互协同的主,辅子群,构造一种新的双子群粒子群优化算法.该算法扩展了种群的搜索范围,充分利用搜索域内的有用信息,在感知到环境变化时能迅速,准确地跟踪动态变化的极值.使用(Dynamic Function 1)生成的复杂动态环境对该算法进行了验证,并与Eberhart提出的动态环境下的粒子群优化算法进行了比较分析.仿真结果表明了该算法的有效性. 相似文献
9.
针对协同设计中任务的执行流程缺乏柔性,不利于分析实际设计过程的现状,提出一种单元调用变迁对与决策变迁相集成的基于对象的扩展Petri网,扩展了Petri网的可达图以适应分析OEPNs模型.采用OEPNs中的过程网和单元网对协同设计过程建模,利用模型中的单元调用变迁对和决策变迁对过程本身和可能状态进行分析.最后与相关的研究工作进行比较并给出了结论. 相似文献
10.
提出一种改进的基于多种群协同进化的微粒群优化算法(PSO).该算法首先利用免疫算法实现解空间的均匀划分,增加了算法稳定性和全局搜索能力.在运行过程中,通过种群进化信息生成解优胜区域,指导变异生成的微粒群向最优解子空间逼近,提高算法逃出局部最优的能力.将此算法与PSO 算法和多种群协同进化微粒群算法进行比较,数据实验证明,该算法不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和稳定性均有显著提高. 相似文献
11.
在两种微粒群算法分析的基础上,针对算法存在局部最优和后期振荡的现象,提出一种改进自适应微粒群算法.新算法引入概率突跳因子改变了原算法中微粒的速度更新公式,引入模拟退火接受准则抑制了概率突跳的不可控制性.典型函数寻优结果表明,新算法能很快地收敛到全局最优解,大幅度降低了达到最优值所需要的迭代数,同时提高了算法的收敛率和收敛精度,在跳出局部搜索的能力上远优于标准微粒群算法和自适应微粒群算法,稳定性好. 相似文献
12.
提出一种动态微粒群多目标优化算法(DCMOPSO),算法中的惯性权重和加速因子动态变化以增强算法的全局搜索能力,并采用拥挤度的方法对外部档案进行维护以增加非劣解的多样性. 在维护过程中,从外部档案中按拥挤度为每个微粒选择全局最好位置,同时使用变异操作避免算法早熟 .通过几个典型的多目标测试函数对DCMOPSO算法的性能进行了测试,并与多目标优化算法MOPSO 和NSGA-Ⅱ 进行对比 .结果表明, 算法具有良好的搜索性能. 相似文献
13.
针对化工生产设备,提出一种基于群灰色关联分析的化工生产设备故障诊断方法,较好地解决了化工设备状态预测和故障模式识别问题.与传统的灰色关联分析相比,该方法提高了灰色关联分析的准确性和可靠性,降低了对单个参考信号的依赖性.最后将该方法应用于化工设备化学反应器的故障识别,识别结果显示,该方法比传统的灰色关联分析效果更佳,更可靠,具有简便易行,计算量小,不需复杂的诊断设备等优点. 相似文献
14.
针对粒子群优化算法早熟问题,提出一种克服早熟的高速收敛粒子群算法.该算法首先采用混沌序列初始化粒子位置,以增强搜索多样性;其次,在算法中嵌入有效判断早熟停滞的方法,一旦检索到早熟迹象,便随机地选择最优解任意一维的分量值,用一个随机值取代它,以扰乱粒子的当前搜索轨迹,使其跳出局部最优.大量仿真实验表明,大多数连续函数的寻优过程只需用几个粒子、迭代几十次便能完成,可实现全局寻优过程的高速收敛. 相似文献
15.
首先介绍最近出现的参数优化方法,概括了高效率的参数优化算法应具备的若干特点 .然后提出了一种新的支持向量机参数优化方法.该方法先在局域内用混沌优化搜索局域最优点,再将此最优点作为梯度方向,通过改变局域范围跳出局部寻优区域. 该方法降低了对性能函数连续且可微的要求,收敛速度快,最终优化解与支持向量机的参数初始值无关.最后,通过仿真实验表明了该方法具有更高的分类和回归准确率. 相似文献
16.
针对准则值具有灰色性和随机性两种信息不确定的多准则决策问题,提出一种灰色随机多准则决策方法.通过对灰数与白数比较的定义,将随机支配规则推广到对灰色随机变量型准则值的处理中,得出方案之间的随机支配关系;利用一般性准则对该随机支配关系进行转换,构建出优势矩阵和劣势矩阵,得出每一方案的优势流和劣势流,进而确定出方案的排序.最后通过算例说明了所提出方法的可行性和有效性. 相似文献
17.
分析了粒子群算法的收敛性,指出早熟是由于粒子速度降低而失去继续搜索可行解的能力.进而提出一种基于种群速度动态改变惯性权重的粒子群算法,该算法以种群粒子平均速度为信息动态改变惯性权重,避免了粒子速度过早接近0.通过5个标准测试函数的仿真实验并与其他算法相比,结果表明该算法在进化中期能很好地保持种群多样性,有效地改善算法的平均最优值和成功率. 相似文献
18.
针对粒子群算法早熟收敛和搜索精度不高的问题,提出一种动态分级的混合粒子群优化算法.该算法采取3种级别的并行粒子群算法,分别用于全局搜索和局部搜索及二者的结合,并根据搜索阶段动态调整各种级别中并行变量的数目.在全局搜索中,将混沌机制引入算法中以增强算法的全局搜索能力;在局部搜索中,采用单纯形法对适应度最优解进行局部寻优.仿真实验表明,该算法比其他优化算法具有更好的性能. 相似文献
19.
为了克服粒子群优化容易陷入局部极小的缺陷,利用粒子速度不依赖于其与最优粒子之间距离的大小,而仅依赖其方向信息的特点,采用自适应策略弹性地修正粒子速度的幅值.同时,充分利用混沌运动的遍历性、随机性及对初值的敏感性等特性,提出一种基于混沌的弹性粒子群优化(CRPSO)算法,并将其成功用于典型多极点函数优化.仿真结果表明,该算法增强了摆脱局部极值点的能力,提高了收敛速度和精度. 相似文献
20.
针对非线性系统多模型自适应控制中的模型覆盖问题,提出一种基于微粒群算法的多模型建模方法.首先,对非线性系统定义了基于混合逻辑模型的多模型描述,建立了非线性系统的混合线性多模型;然后,基于微粒群优化算法对非线性系统进行优化建模,在保证建模准确性的同时采用最少的子模型逼近非线性系统;最后,通过一个仿真算例表明了该建模方法的有效性. 相似文献
|