共查询到18条相似文献,搜索用时 91 毫秒
1.
基于求线性矩阵方程同类约束解的修正共轭梯度法,建立了求多变量线性矩阵方程异类约束解的修正共轭梯度法,证明了该算法在有限步计算后可得到矩阵方程的一组异类约束解,当选取特殊初始矩阵时可得到矩阵方程的极小范数异类约束解.另外,还可求得指定矩阵在该矩阵方程异类约束解集合中的最佳逼近. 相似文献
2.
胡伟东 《兰州工业高等专科学校学报》2010,17(5):8-11
当非对称代数Riccati方程的4个常数矩阵所组成的矩阵K为非奇异M-矩阵时,ALI算法已经被证实对求解非对称代数Riccati方程最小非负解是一种有效的算法.给出广义ALI算法,并验证ALI算法是广义ALI算法的一种特殊形式. 相似文献
3.
对一类非对称耦合的Riccati方程给出了统一的一般形式,用牛顿迭代法和不动点迭代法求解这类方程。在一定条件下证明了这两种迭代方法单调收敛到具有实际意义的最小非负解,并通过数值实验验证了本文所用方法的有效性。 相似文献
4.
为求解一类非线性矩阵方程的对称解,提出一种双迭代算法。运用牛顿迭代解法求解一类非线性矩阵方程的对称解,应用修正共轭梯度法求解由牛顿法每一步迭代所得到的线性矩阵方程的对称解或最小二乘对称解。数值实例表明,该双迭代算法是有效的。 相似文献
5.
陈世军 《延边大学学报(自然科学版)》2019,(2):109-113
研究了一类含有高次逆幂非线性矩阵方程中心对称解的数值计算问题.首先用牛顿算法求等价的线性矩阵方程的中心对称解,然后用修正共轭梯度算法(MCG算法)求线性矩阵方程的中心对称解或中心对称最小二乘解.数值算例表明,本文算法有效. 相似文献
6.
讨论某些能用初等方法彻底求解的矩阵Riccati微分方程。均在有限形式下得到了解析解,并且给出了它们在最优控制中的一些应用。 相似文献
7.
借鉴求线性矩阵方程(LME)同类约束最小二乘解的修正共轭梯度法,建立了求双变量LME的一种异类约束最小二乘解的修正共轭梯度法,并证明了该算法的收敛性.在不考虑舍入误差的情况下,利用该算法不仅可在有限步计算后得到LME的一组异类约束最小二乘解,而且选取特殊初始矩阵时,可求得LME的极小范数异类约束最小二乘解.另外,还可求得指定矩阵在该LME的异类约束最小二乘解集合中的最佳逼近.算例表明,该算法是有效的. 相似文献
8.
9.
马云峰 《辽东学院学报(自然科学版)》2014,(3):211-213
文章应用推广方程法Riccati函数展开法求Burgers方程的解,获得了Burgers方程一系列新形式的精确行波解,这些解包括三角函数解、双曲函数解。并借助于Matlab对精确解进行数值模拟,得到精确解的直观表示。 相似文献
10.
基于共轭梯度法,建立了一类Lyapunov矩阵方程的对称最小二乘解的迭代算法.使用该算法不仅可以判断这类矩阵方程的对称解的存在性,而且无论对称解是否存在,都能够在有限步迭代计算之后得到对称最小二乘解.选取特殊的初始矩阵时,可求得极小范数对称最小二乘解,同时也能给出指定矩阵的最佳逼近对称矩阵.最后,利用数值算例对有关结果进行了验证. 相似文献
11.
求解微分方程初值问题是小波分析在数学上的一个重要应用。在已有的利用Haar小波求解微分方程方法的基础上,对求解Riccati方程初值问题的离散化过程进行了改进,减小了运算量。数值实验表明,该方法在数值上精度略好于文献中利用Haar小波求解微分方程的方法。 相似文献
12.
Riccati方程初值问题的Haar小波数值解法 总被引:1,自引:0,他引:1
求解微分方程初值问题是小波分析在数学上的一个重要应用.在已有的利用Haar小波求解微分方程方法的基础上,对求解Riccati方程初值问题的离散化过程进行了改进,减小了运算量.数值实验表明,该方法在数值上精度略好于文献中利用Haar小波求解微分方程的方法. 相似文献
13.
应用正交矩阵标准形及其不变性得到了n阶矩阵迹方程(tr A-1)2+1 ≤l (al j-aj l)2=n+1有正交解A=(al j)的充要条件,以及该方程的特征值都为实数或纯虚数的所有正交解的显示表达.由上述结果得到了相应迹方程的对称正交解的通解,并证明了其不存在反对称正交解. 相似文献
14.
15.
针对求解二次矩阵方程X 2-A=0的约束解问题,提出一种新的迭代算法,并给出该算法在求解二次矩阵方程对称解时的收敛性定理。数值实验证明了算法的有效性。 相似文献
16.
为了求解大型矩阵方程的多约束优化问题,基于Dykstra交替投影算法和相关的矩阵分解理论,提出了求解矩阵方程AXAT=B的多约束条件下的最小二乘解的迭代算法,并讨论了算法的收敛性。数值实验验证了算法的有效性。 相似文献
17.
研究矩阵方程AX=B在Hermitian矩阵集合中的解及其最佳逼近问题,利用正交投影迭代法,给出迭代算法。证明了算法的收敛性,分析了收敛速率,最后通过数值实例,验证了算法的有效性。 相似文献
18.
为了求解矩阵范数约束下矩阵方程AX=B的最小二乘解问题,提出了一种迭代算法.该算法以广义Lanczos信赖域算法为基本框架,弥补了其不能求解矩阵方程的缺陷.数值实验表明,该算法是有效的. 相似文献