首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以典型工况下盾构机主驱动单唇形密封圈为研究对象,利用单轴拉伸试验得到密封圈丁腈橡胶材料的应力-应变曲线,确定Yeoh三阶模型的材料参数;建立单唇形密封圈的二维轴对称有限元模型,研究介质压力、压差、摩擦因数和温度对其密封性能的影响规律。研究表明:介质压力主要影响最大接触应力,随着介质压力的增加,最大接触应力呈线性增加;介质压差主要影响最大接触应力和接触长度,随着介质压差的增加,最大接触应力先线性增加然后基本保持不变,而接触长度呈非线性增加;温度变化对密封性能的影响可以忽略;在考虑的工况条件下,单唇形密封圈唇口与旋转轴接触处产生的最大接触应力始终大于介质压力,密封性能良好。  相似文献   

2.
针对传统圆柱形液压活塞承载力不足问题,提出一种矩形异形活塞,研究其在不同工况下的密封性能。基于Abaqus软件建立异形活塞有限元模型,研究介质压力、密封间隙、活塞运动状态以及摩擦因数对密封性能的影响,并分析异形密封环不同位置处的应力分布和翻转情况。结果显示:静密封时,介质压力越大,密封环的最大Mises应力和最大接触应力越大;密封间隙越小,最大Mises应力与最大接触应力越大;相比静密封,内行程过程中最大Mises应力和最大接触应力都有明显增加,且随摩擦因数增加而增加,而外行程中最大Mises应力和最大接触应力相比静密封差异较小;各工况下应力最大值均出现在密封环圆弧段;在活塞运动过程中密封圈并未发生翻转,只是存在位置的平移情况。研究结果证明了异形活塞的可行性以及良好的密封性能,为活塞结构设计与优化提供了依据。  相似文献   

3.
为研究径向弹簧蓄能密封结构的密封特性,针对典型径向弹簧蓄能密封结构,分析其密封机制以及O形弯曲金属螺旋弹簧的弹性特性;采用ANSYS有限元分析软件,建立典型弹簧蓄能密封结构的非线性有限元分析模型,对弹簧蓄能密封圈在不同压缩率、不同介质压力下的接触应力进行分析,研究在多种工况下最大接触应力的变化情况。结果表明:压缩率保持不变时,最大接触应力随着介质压力的增大而增大;介质压力保持不变时,随着压缩率的增大,最大接触应力先增大再减小。对压缩率、介质压力与最大接触应力的关系进行曲线拟合,可用于指导弹簧蓄能密封结构的精确设计。  相似文献   

4.
为研究三轴可燃冰试验机轴向加载杆用X形密封圈在工作时的密封性能,利用ABAQUS软件建立X形密封圈结构的二维轴对称模型,讨论了静密封中的介质压力、压缩量、摩擦系数以及特定试验工况下往复动密封对X形密封圈密封性能(应力)的影响。研究结果表明,在高介质压力下,加装挡圈可以明显改善密封圈应力集中现象;在各影响因素下,X形密封圈的接触应力均能满足密封要求,并且剪切应力均小于橡胶材料的剪切强度,不会造成X形密封圈的撕裂破坏;因为摩擦系数的增加使X形密封圈摩擦应力增加,容易造成X形密封圈的磨损失效,所以摩擦系数的选择不宜过大。在动密封分析中,X形密封圈满足密封要求,卸载过程中各应力值大于加载过程中的各应力值,使三轴可燃冰试验机可以在良好的密封状态下进行试验。  相似文献   

5.
流入控制阀是智能井技术的核心,在油气井高温高压等复杂的环境中,流入控制阀的密封效果直接影响阀的正常工作。依据智能完井工况,设计流入控制阀的结构及其金属密封结构。利用有限元分析软件ANSYS建立金属密封结构的有限元模型,分析最大过盈量、密封圈接触面的锥度、密封圈内部槽的几何尺寸、井下压力状态等敏感性参数对密封结构密封性能的影响。结果表明,随着金属密封圈最大过盈量的增加,最大接触应力降低而最大等效应力增加,而随着接触面锥度的增大接触面长度变长,接触压力和最大等效应力均呈下降趋势;内槽锥度对金属接触对影响较小,对密封圈的等效应力影响较大,内槽锥度增大,等效应力大幅增加。综合考虑应力的影响,应选择合适的最大过盈量,密封圈接触锥度不宜太大,且应尽量减小内槽面的锥度。  相似文献   

6.
利用ANSYS建立T形滑环组合密封的二维轴对称有限元模型,将密封结构划分为4个密封区域,研究静、动密封状态下介质压力、密封间隙、摩擦因数和T形滑环斜边与垂直线之间的角度,对组合密封圈密封性能的影响。仿真结果表明,T形滑环组合密封可以满足研究的压力范围下的静、动密封要求。其最大Von Mises应力和最大接触应力随介质压力增大而增大,随密封间隙增大而减小;最大Von Mises应力和最大接触应力随滑环斜边与垂直线之间角度增大而增大,当角度为2.5°~7.5°时,组合密封可达到密封要求且滑环不易磨损;摩擦因数越小,组合密封动密封性能越好。  相似文献   

7.
为准确模拟密封圈的装配安装过程的接触压力和流体压力对密封圈的作用,采用ABAQUS自动收缩配合方式仿真分析密封圈装配过程的接触静压,采用流体压力渗透载荷的加载方式模拟介质压力对密封圈的作用,研究组合密封中O形圈压缩率和工作介质压力对齿形滑环式组合密封圈密封性能的影响。研究表明:采用自动收缩配合方式能有效解决常规的位移加载方法引起的计算的接触压力不准确问题,采用流体压力渗透载荷的加载方式可自动寻找唇口接触与分离的临界点,计算高压流体加载时可得到很好的收敛解,有效解决了通过边界法加载介质压力时计算结果不准确的问题。计算结果表明:当压缩率超过一定值时,齿形滑环组合密封圈的最大Mises应力和主密封区域最大接触应力随工作介质压力的增加而增加,最大接触应力满足密封的要求;但当压缩率太低时,密封圈在高介质压力下产生较大的形变造成很大的应力集中,导致密封失效。  相似文献   

8.
O形圈动密封特性的有限元分析   总被引:1,自引:0,他引:1  
利用软件ABAQUS建立了O形圈的轴对称有限元模型,分析了其在往复动密封中的密封性能,并对其不同工况下的力学性能进行了研究。结果表明:往复动密封中,O形圈主密封面最大接触应力与Von Mises应力的作用位置随运动方向的变化而改变,且大小随时间呈波动变化;速度小于0.25 m/s时,速度对摩擦力与剪切应力几乎无影响;随着摩擦系数、介质压力的增大,摩擦力与剪切应力对速度的敏感性变高;介质压力与摩擦系数对摩擦力与剪切应力影响较大,剪切应力与摩擦力呈同步变化;密封外行程Von Mises应力与剪切应力均大于内行程,更易引起疲劳与剪切破坏;预压缩率增加到一定值时,O形圈在动密封中所受的摩擦力急剧上升,动密封中预压缩率不宜过大。  相似文献   

9.
水下采油树油管悬挂器密封性能分析   总被引:1,自引:0,他引:1  
以水下采油树油管悬挂器密封结构为研究对象,建立金属密封圈凸缘处的接触面为半圆形接触面(密封Ⅰ)和倾斜接触面(密封Ⅱ)2种形式的力学模型,利用ABAQUS软件建立其有限元模型,分析过盈量、压力和温度对金属密封圈最大Mises应力和最大接触应力的影响及不同过盈量时接触应力在接触宽度上的分布。结果表明:密封Ⅰ的最大Mises应力和最大接触应力都随着过盈量、工作压力和温度的增加而增加,而密封Ⅱ的最大Mises应力和最大接触应力呈现不同的变化趋势;密封Ⅰ能够提供较大的接触应力,具有很强的密封能力,但密封宽度相对较小;一定的过盈量时,密封Ⅱ能达到较大接触宽度,保证良好的密封性能。  相似文献   

10.
为研究海上稠油热采工具密封用金属O型圈的高温密封性能,建立金属O型圈密封轴对称有限元分析模型,计算其高温条件下接触压力与剪切应力变化规律,分析金属O型圈高温密封影响因素,并利用试验验证理论研究结果。研究表明,温度变化显著影响金属O型圈的强度和密封性能,金属密封圈最大接触应力和剪切应力随工作压力的增加呈非线性增大,密封圈密封性提高,强度下降;初始压缩率在12%~16%范围内时,金属O型圈的高温密封性能最好,能满足350 ℃下稠油热采工具密封要求。理论研究结果通过试验得到有效验证。  相似文献   

11.
以轴用动密封Yx形密封圈为研究对象,运用有限元法建立二维轴对称模型,分析其在往复单向动密封中的密封性能,并对其不同工况下的力学性能进行研究。结果发现:动密封中Yx形密封圈主接触面最大接触应力、内部Von Mises应力的大小随时间而波动变化,且其作用位置随往复运动方向的改变而变化;主接触面平均摩擦力与介质压力、摩擦因数和密封间隙成线性关系,且几乎不因速度而变化,但最大摩擦力在各影响因素下却表现出了非线性特征;0.05~0.35 m/s范围内,速度对剪切应力影响较小;介质压力、摩擦因数、密封间隙对内行程的剪切应力影响较大;外行程在密封圈的失效过程中起主要作用;密封圈与轴接触的表面、内唇唇口、沟槽以及根部为易破坏的部位。仿真结果与实际失效特征吻合。  相似文献   

12.
针对气动平衡器中O形密封圈的密封问题,利用ANSYS软件建立有限元分析模型,得出不同预压缩率和工作压力下应力的变化规律.研究结果表明,随着预压缩率和工作介质压力的增大,密封圈所受到的最大接触应力和von Mises应力随之增大,预压缩率取20%时,von Mises应力受到工作压力的影响较小,密封效果较好.搭建气动平衡...  相似文献   

13.
利用ABAQUS软件建立了高压氢气环境下橡胶O形圈静密封结构的有限元分析模型,研究了高压氢气作用下由于橡胶材料的吸氢膨胀对O形圈变形及应力的影响,探讨了不同初始压缩率、氢气压力、沟槽间隙、有无挡圈等工况下O形圈最大Von Mises应力、最大剪切应力和最大接触应力的变化规律。结果表明:高压氢气环境下,吸氢膨胀会导致橡胶O形圈的截面高度和面积的增加,但对O形圈的应力基本无影响。增加O形圈压缩率会提高初始安装工况下的接触应力,有利于初始密封的形成,但当介质压力较大时,过高的压缩率会显著增加剪切应力,导致O形圈发生剪切破坏。相较于低压工况,高压下密封沟槽间隙对O形圈的Mises应力和剪切的影响非常显著,较大的沟槽间隙会使O形圈发生挤出和剪切破坏,而安装密封挡圈可明显改善O形圈的变形和应力情况,有效防止O形圈被挤入沟槽间隙,同时提高密封性能。  相似文献   

14.
为研究往复密封轴用Y形密封圈在静、动密封工作时的密封性能,利用有限元软件ABAQUS建立了Y形密封圈二维轴对称有限元模型,讨论了工作压力、密封间隙、往复运动速度、摩擦系数对其密封性能的影响。结果表明:静密封工作时,Y形密封圈内部应力基本呈对称分布;动密封工作时,Y形密封圈内唇侧应力明显大于外唇侧应力,外行程应力变化波动幅度大于内行程相应应力变化波动幅度,外行程更易引起密封圈失效;Y形密封圈根部、上端开口处、内唇唇口、密封圈与活塞轴接触区域较易发生失效;Y形密封圈最大接触应力均大于相应工作压力,具有较好的密封性能;往复运动速度对最大Von Mises应力影响较小;工作压力、密封间隙、摩擦系数对最大剪切应力影响较大。  相似文献   

15.
宋强  张浩  许可  姚晨佼  赵飞虎 《润滑与密封》2022,47(12):178-185
为选择合理的水下装备密封结构形式,对格莱圈、O形圈、X形圈组合和矩形圈在水下环境下的密封性能进行分析。采用ABAQUS软件分别建立4种密封结构的有限元分析模型,研究4种密封结构在预压缩阶段、变压缩率和变外界压力下的等效应力、接触应力和剪切应力变化规律,对比分析4种密封结构的密封性能。研究结果表明:相同的初始压缩率下,矩形圈最大等效应力最大,然后依次是X形圈组合、格莱圈、O形圈,矩形圈最大接触应力和最大剪切应力最大,然后依次是X形圈组合、O形圈、格莱圈,矩形圈在初始压缩阶段具有更好的密封性能;随着初始压缩率和外界压力的增大,格莱圈、O形圈、X形圈组合和矩形圈的最大等效应力、接触应力、剪切应力随之增大,其中矩形圈和X形圈组合的应力增长率较高。矩形圈和X形圈组合在密封能力方面较优,但其等效应力和剪切应力水平过高,容易诱发密封失效;格莱圈和O形圈虽然在密封能力方面不如矩形圈和X形圈组合,但其最大等效应力和最大剪切力较小,故其用作密封时寿命更长。  相似文献   

16.
传动活塞的密封性能对燃气弹射装置的正常工作有着重要影响。为保证和提高燃气弹射的可靠性,设计了一种组合/复合密封,并分析该密封的工作原理;理论分析密封的泄漏模型和密封的失效准则,推导二维N-S控制方程,给出复合密封的可靠性数学模型、k-ε湍流方程、超弹性橡胶本构模型;采用有限元仿真的方法讨论密封泄漏的压力变化、密封的受力情况。结果表明:燃气泄漏后其压力随密封位置而呈阶梯形下降,密封圈受到的最大接触应力和等效应力总大于燃气的工作压力,剪切应力总小于密封圈的抗剪切强度,满足密封失效准则,能作为一种燃气弹射传动活塞的密封结构。  相似文献   

17.
充气式柔性密封的非线性有限元分析   总被引:2,自引:0,他引:2  
从V形橡胶密封圈结构特点和密封可靠性出发,考虑结构的材料非线性、几何非线性和接触非线性,建立了充气式柔性密封的轴对称有限元模型,对其充气密封机制进行了分析,得到了密封面法向接触应力的分布规律;讨论了不同的充气压力和密封介质压力对法向接触应力的影响.结果表明,实现有效密封的关键是使法向接触应力高于密封介质压力,而法向接触应力的大小随充气压力的增大而增大;密封介质压力的存在使得接近密封介质一侧的接触压力减小,进而密封面的长度减小,影响密封效果;最大von Mises应力主要集中于与刚性件尖角接触处以及内壁的圆弧面上,且随充气压力的增大而增大;合理的密封结构和充气压力可保证密封的效果和可靠性,同时也可延长橡胶密封圈的使用寿命;利用有限元软件ANSYS进行充气式柔性密封圈结构设计和优化是可行的.  相似文献   

18.
研究原油高温热采工具 O 形橡胶密封圈在高温高压下的密封特性。借助于大型有限元分析软件 ANSYS,建立 O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和 Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对 O 形密封圈密封性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成 O 形橡胶密封圈最大接触应力下降和最大剪切应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大 Von Mises 应力明显减小,因此应使 O 形密封圈在适当的温度下工作,以确保密封的可靠性。  相似文献   

19.
基于ANSYS的Y形密封圈密封性能研究   总被引:1,自引:0,他引:1  
利用有限元分析软件ANSYS研究Y形密封圈的密封性能,分析不同工作压力下密封偶合面间的压力分布与变形,得到密封偶合面间的接触应力分布规律及接触应力与工作介质压力之间的关系。模拟不同工况时Y形圈与相对运动表面间的摩擦力大小及Y形圈的挤出状况,给出不同间隙和不同工作压力下的挤入临界曲线。结果表明:Y形密封圈接触压力的最大值发生在密封圈与缸体接触的唇部区域;摩擦力最大值发生在Y形圈与活塞及缸体接触的2个唇形区域;Y形密封圈上下唇的最大接触压力随着工作压力的增加而增大,且总是大于工作压力,并且外行程时受到的摩擦力总是大于内行程时受到的摩擦力,因而具有良好的耐压性和密封性能。  相似文献   

20.
黄发  马健  吴正洪 《润滑与密封》2020,45(7):128-135
针对某型发动机高压转子连接结构的密封问题,设计一种U形金属密封环,分析研究密封环的密封和强度性能,探究结构参数(包括根部倒圆、壁厚、环高、接触面曲率半径、密封环接触面角度、密封环配合件角度)对密封环最大等效应力、最大接触应力的影响,基于ANSYS Workbench优化设计模块,采用代理模型结合遗传算法的优化技术对密封环结构进行优化。结果表明:安装压缩率范围为3.56%~6.33%时,可保证安装和工作2种工况下密封和强度的要求;最大等效应力与壁厚成正比关系,而与根部倒圆和环高成反比关系;接触面曲率半径对最大等效应力影响较小,但最大接触应力随着接触面曲率半径的增加而增加;选择合适的角度范围时,密封环接触面角度和密封环配合件角度对最大等效应力、最大接触应力影响均较小。密封环结构优化后,最大等效应力在安装和工作2种工况下分别减小了34.3%和30.4%,同时密封环质量减少了6.1%。对设计的U形金属密封环随整机进行了试验,结果表明U形金属密封环密封性能良好,验证了设计的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号