首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titana...  相似文献   

2.
以一定化学计量比均匀混合的Si、Ge、B混合粉末为原材料,使用放电等离子烧结(SPS)一步法合金化制备了p型Si80Ge20Bx(x=0.5,1.0,2.0)合金热电材料,并对样品的组成、微观形貌、热电性能进行了表征与分析。结果表明,放电等离子烧结过程实现原位合金化并烧结为块体材料。随着B掺杂量的增加,电导率明显提升,热导率显著下降,当温度为950K时,热导率为1.79W/(m·K)。在1050K时,ZT值达到了0.899。球磨和掺杂的协同作用使得SiGe合金基体内产生不同类型的缺陷特征而散射不同波长的声子,导致硅锗合金热导率的降低。  相似文献   

3.
The p-type TiCoSb-based half-Heuslers are widely studied due to the good electrical transport properties after hole doping,while the pristine TiCoSb is intrinsically n-type.It is thus desired to obtain a comparable n-type counterpart through optimization of electron concentration.In this work,n-type Ti_(0.9-x)Hf_xTa_(0.1)CoSb half-Heuslers were fabricated by arc melting,ball milling,and spark plasma sintering.An optimized carrier concentration,together with a decreased lattice thermal conductivity,was obtained by Ta doping at the Ti site,leading to a peak figure of merit(ZT) of 0.7 at 973 K in Ti_(0.9)Ta_(0.1)-CoSb.By further alloying Hf at the Ti site,the lattice thermal conductivity was significantly reduced without deteriorating the power factor.As a result,a peak ZT of 0.9 at 973 K and an average ZT of 0.54 in the temperature range of 300-973 K were achieved in Ti_(0.6)Hf_(0.3)Ti_(0.1)CoSb.This work demonstrates that n-type TiCoSb-based halfHeuslers are promising thermoelectric materials.  相似文献   

4.
The thermoelectric properties at elevated temperature were investigated for n-type Bi2(Te,Se)3 which is obtained from ball milling processed powder with various milling times. Electrical properties such as electrical resistivity and Seebeck coefficient are clearly dependent on milling time, in which the carrier concentration is attributed to the change of the electrical properties. The concentrations of the defects are also varied with the ball milling time, which is the origin of the carrier concentration variation. Even though finer grain sizes are obtained after the long ball milling time, the temperature dependence of the thermal conductivity is not solely understood with the grain size, whereas the electrical contribution to the thermal conductivity should be also considered. The highest figure of merit value of ZT = 0.83 is achieved at373 K for the optimized samples, in which ball milling time is 10 h. The obtained ZT value is 48% improvement over that of the 0.5-h sample at 373 K.  相似文献   

5.
Two medium-entropy alloys,NbZrTi and NbHfZrTi,were prepared by arc melting.Both NbZrTi and NbHfZrTi alloys are composed of simple body-centered cubic(bcc)solid solution phase and exhibit dendritic structure.After being homogenized,both NbZrTi and NbHfZrTi alloys are still composed of the single bcc solid solution phase,but the microstructure of the two alloys transforms from the dendritic structure into the polycrystalline structure.Two alloys display significantly workhardening effect during compression at room temperature and show relatively good deformation plasticity during compressive deformation at room temperature.For NbZrTi and NbHfZrTi alloys,the dynamic recrystallized grains form along the boundary during compression at the temperatures of 1073 and 1273 K.  相似文献   

6.
Repetitive hot deformation has been demonstrated as a new approach to obtain high-performance n-type bismuth–telluride-based alloys, benefiting from the deformation-induced lattice defects and texture enhancement. X-ray diffraction measurement showed that the oriented textures were greatly enhanced after repetitive hot deformation of the alloys with a quasi-layered crystal structure. The electrical conductivity was remarkably improved by the deformation-induced donor-like defect and texture enhancement, while the Seebeck coefficient remained almost unchanged, and consequently the room temperature power factor was significantly increased from 1.3 W m?1 K2, before hot deformation, to 2.9 W m?1 K2 after four hot deformations. The in-plane lattice thermal conductivity was also largely reduced by the generated high-density lattice defects during the hot-deformation process. The maximum ZT value for the repetitively hot-deformed samples reached 1.0 at 513 K, suggesting that the simple new top-down method is very promising for large-scale production of high-performance bismuth–telluride-based polycrystalline bulk materials.  相似文献   

7.
The mechanical alloying technique was used to make multi-phase alloys V TiFe0.85Mn0.15.Their hydrogen storage properties were characterized and compared with that of the polycrystalline alloys made by casting.It was found that the ball milled alloys can absorb hydrogen at room temperature in the first cycle without prior activation.The 40% V 60% TiFe0.85Mn0.15 alloy made by mechanical alloying shows the best hydrogen storage property with the valid hydrogen capacity up 50 220mL/g at 293K and 4.0MPa, and the P-C-T behavior is also improved.The XRD and EDX analyses also show that the phase of these alloys contains.V,TiFe,γ-TiMnx,TiFe2 and α-FeV.The composition of these phases affects significantly the hydrogen storage properties of alloys.  相似文献   

8.
《Acta Materialia》2008,56(20):5954-5963
The thermoelectric material PbTe has been used in a wide variety of power generator applications. However, there is limited mechanical property data available for PbTe for temperatures above room temperature. This paper reports dynamic elastic moduli measured via resonant ultrasound spectroscopy on undoped and PbI2-doped polycrystalline PbTe between room temperature and 773 K; in addition, the room temperature carrier concentration was measured by a Hall effect experiment. The Young’s modulus and shear modulus of PbTe decreased linearly with temperature above room temperature, while the Poisson’s ratio exhibited either monotonic increase or decrease with temperature. The Young’s modulus and shear modulus values obtained during heating and cooling agreed to within 1%. The dynamic elastic moduli data obtained in this study compared well in general with literature data. The difference observed between the current study and other literature studies is explained in terms of the carrier concentration effect on elastic moduli.  相似文献   

9.
Starting from elemental bismuth, tellurium and selenium powders, n-type Bi2Te2.85Se0.15 solid solution with fine microstructure was prepared by mechanical alloying (MA) and plasma activated sintering (PAS) in the present work. The effect of PAS process on microstructure and thermoelectric properties of the sintered samples was investigated. The sintering temperature of PAS process (683 K) was 80–100 K lower than that of conventional hot pressing and the whole PAS process was also greatly shortened to about 30 min. A preferentially orientated microstructure with the basal planes (0 0 l) perpendicular to pressing direction was formed in the PASed sample and the maximum figure of merit (Z) at room temperature was 1.80 × 10−3 K−1.  相似文献   

10.
Half-Heusler (HH) semiconductor alloys are being widely investigated due to their promising potential for thermoelectric (TE) power generation applications. Sb is an effective doping element for n-type ZrNiSn half-Heuslers alloys. HH thermoelectric materials Hf0.25Zr0.75NiSn1−xSbx (0 ≤ x ≤ 0.03) were synthesized by induction melting combined with plasma activated sintering (PAS) technique. X-ray diffraction concluded that single-phase HH compounds without compositional segregations were obtained. Presence of bended lamellar structures was revealed by the FESEM. Sb doping significantly enhanced the electrical conductivity, power factor and carrier concentration of the alloys. An increase in the carrier mobility was also observed. Consequently, optimum values of 4.36 × 10−3 W/mK2 and 4.7 × 1020 cm−3 were achieved for power factor and carrier concentration, respectively. As a result, a ZT value of 0.83 at 923 K was obtained which is about 67% improvement compared to the un-doped sample.  相似文献   

11.
Bismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However,BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering(SPS). Additionally, its thermoelectric properties above room temperature were investigated along both the inplane and out-plane directions, and they exhibit strong anisotropy. Low sound velocity along two directions is found and contributes to its low lattice thermal conductivity. Polycrystalline BiTeBr exhibits relatively good thermoelectric performance along the in-plane direction,with a maximum dimensionless figure of merit(ZT) of 0.35 at 560 K. Further enhancements of ZT are expected by utilizing systematic optimization strategies.  相似文献   

12.
结合Ti3Al基合金室温塑性的主要影响因素,总结了Ti3Al基合金改善塑性的方法,这些方法包括:合金化、细化晶粒、热处理、控制间隙元素含量等。合金化元素主要包括Mo,V,Nb3种,它们的加入稳定了塑性相。提高了合金塑性。细化晶粒一方面可缩短滑移带长度,减少晶界的应变集中,使裂纹形核变得困难;另一方面由于细晶材料的塑性变形协调性较好,有利于更多滑移系的开动。热处理通过控制组织达到改善塑性的目的。间隙元素严重影响合金塑性,控制其含量是改善塑性的重要手段。  相似文献   

13.
In this study, we report the effect of Zn doping on the thermoelectric properties of Co_(1-x)Zn_xSbS_(0.85)Se_(0.15)solid solutions(x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit(zT) increases from 0.17 to 0.34 at 875 K for Co_(0.95)Zn_(0.05)SbS_(0.85)Se_(0.15) sample, due to the noticeable decrease in the lattice thermal conductivity by introducing point defect, which is further confirmed by an analysis based on the Debye-CallawayKlemens model. Meanwhile, the thermoelectric power factor is maintained at high temperatures. This work highlights the important role of point defect in improving the thermoelectric performance of CoSbS-based compounds.  相似文献   

14.
Bi2Te3−xSex alloys are extensively used for thermoelectric cooling around room temperature, but, previous studies have reported peak thermoelectric efficiency of the material at higher temperature around 450 K. This study presents the casting followed by high energy ball milling and spark plasma sintering as a thriving methodology to produce efficient and well-built Bi2Te3−xSex material for the thermoelectric cooling around room temperature. In addition, changes in electrical and thermal transport properties brought up by amount of Se in the Bi2Te3−xSex material for this methodology are measured and discussed. Although Seebeck coefficient and electrical conductivity showed irregular trend, power factor, thermal conductivity and figure of merit ZT gradually decreased with the increase in amount of Se. A maximum ZT value of 0.875 at 323 K was obtained for x = 0.15 sample owing to its higher power factor. This value is 17% and 38% greater than for x = 0.3 and x = 0.6 samples respectively. At 323 K, herein reported ZT value of 0.875 is higher than the state of art n-type Bi2Te3 based thermoelectric materials produced by the time consuming and expensive methodologies.  相似文献   

15.
硒化锡材料因为其优良的ZT性能,有巨大的热发电应用潜力。此文我们详细地对比了单晶和多晶硒化锡在热力学和电性能输运方面的差异。其中,单晶样品是通过布里奇曼法合成的,多晶样品是通过熔融、粉碎和SPS烧结合成的。热电性能的测量则是通过四探针法和激光闪射法完成的。我们发现单晶样品的功率因子是多晶的2倍,而热导率也是多晶样品的3倍左右,这就直接导致了单晶和多晶的最高ZT值差异不大。单晶硒化锡在823 K处取得最高ZT 为0.65,而多晶则是在923K 取得最高ZT为0.5. 这些发现可以为系统地探索硒化锡材料的热电应用提供坚实的基础。  相似文献   

16.
对6种不同硫含量的Cu-Ni合金进行了室温拉伸试验。系统地研究了拉伸速率和硫含量对材料屈服强度、拉伸强度、伸长率和断面收缩率的影响。通过扫描电镜、能谱分析和金相组织分析,研究了硫含量对金相组织的影响。分析了Cu-Ni合金中硫析出物的分布、变形及对塑性的影响规律。分析了材料发生断裂的起源和过程及硫含量对塑性影响的根本原因,为后续冷变形过程提供理论依据。  相似文献   

17.
Hot-pressed samples of the semi-conducting compound CoSb3-doped Pd and Te were prepared and characterized by X-ray and microprobe analysis. Thermoelectric characterization was done through measurements of the electrical and thermal conductivities as well as the Seebeck coefficient between room temperature and 900 K. All samples had n-type conductivity. The dimensionless thermoelectric figure of merit ZT increases with increasing temperature and reaches a maximum value of 1 at 873 K.  相似文献   

18.
Sb掺杂对Mg_2Si基化合物热电性能的影响(英文)   总被引:1,自引:0,他引:1  
采用感应熔炼和真空热压的方法制备了Sb掺杂和未掺杂的Mg2Si基热电材料.研究了Sb掺杂对Mg2Si基热电材料的结构以及热电特性的影响.结果表明:通过Sb掺杂使得载流子浓度从3.07x1019 cm-3增加到1.25x1020 cm-3,电子有效质量也相应增加.测试了从室温到800 K下试样的Seebeck系数,电导率和热导率.结果显示,0.3 at%Sb掺杂使得电导率得到显著增加,在783 K时,ZT值达到0.7.  相似文献   

19.
To investigate tensile mechanical behavior, tensile tests were conducted at room temperature and 1273 K on three-phase alloys consisting of the E21 Co3AlC, B2 CoAl and (Co) primary solid solution. The alloy containing a large volume fraction of E21 phase exhibits excellent ductility, exceeding 5% plastic strain at room temperature, while the alloy with a considerable amount of coarse B2 phase particles shows zero ductility. In this study, microstructure control was used to improve the ambient temperature ductility of the E21/B2/(Co) three-phase alloys. Hot forging and subsequent heat treatments were performed aiming at eliminating solidification defects and minimizing the heterogeneity of the as-cast microstructure. These thermomechanical treatments together with compositional control effectively improve the ductility of the E21/B2/(Co) three-phase alloys at ambient temperature and 1273 K.  相似文献   

20.
选用Mn基Heusler合金为研究对象。通过电弧熔炼和热处理制备样品,并用甩带法制成薄带形状。采用X射线衍射仪和振动样品磁强计等分析仪器测试了样品的晶体结构、磁及磁热性能,分析了Mn含量对材料晶体结构、磁和磁热性能的影响。研究发现,Mn2-xSn0.5Ga0.5合金在常温下为六方结构,在室温附近仅发生一次二阶磁性转变,无明显磁滞和热滞。居里温度和饱和磁化强度对Mn含量非常敏感,随着Mn含量升高,居里温度和饱和磁化强度均出现下降,由Mn1.2Sn0.5Ga0.5的304 K和64.1 emu/g分别降至Mn2Sn0.5Ga0.5的262 K和46.7 emu/g,这表明合金中的磁矩呈亚铁磁形态分布。由于没有磁滞和热滞,室温附近较大的工作温度区间,因此,该材料在磁制冷领域具有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号