共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
网络上主要流量的动态性恶化了已存在的流量识别的方法,这些动态性的流量有P2P和多媒体流量等。为了识别这些流量,我们需要具有高效的准确性的识别方法。本文将特征识别和会话行为映射方法相结合,以进行精确的流量识别。创新点在于,对包进行基于优先级的特征匹配,而不是通常的特征匹配。并对没有识别出的流量采用会话行为映射的方法进行识别。 相似文献
3.
基于连接图的互联网流量分类方法能反映主机间的通信行为,具有较高的分类稳定性,但是经验式总结的启发式规则有限,难以获得高分类准确率.研究分析了主机间通信行为模式和BOF方法,从具有相同{目的IP地址,目的端口号,传输层协议}网络流量中,提取主机间连接相关的行为统计特征(HCBF),采用C4.5决策树算法学习基于行为特征的分类规则,其无需人工建立启发式规则.在传统互联网和移动互联网流量数据集上,从基本分类性能和分类稳定性方面,与现有的特征集进行比较分析,实验结果表明,HCBF特征集合的类间区分能力和稳定性较高. 相似文献
4.
刘涛涛;付钰;俞艺涵;安义帅 《通信学报》2025,46(6):45-59
针对传统加密流量分类方法受限于数据集类不平衡以及复杂网络环境下所用特征不可靠等问题,提出一种基于并行流量图和图神经网络的加密流量分类方法。首先,从数据包头部和有效负载2个角度分别构建流量图以突出二者的差异;其次,引入改进的图注意力网络提取并行流量图的有效信息;然后,利用特征交叉融合注意力模块将提取到的信息进行融合以获得更为鲁棒的特征表示;最后,通过全连接层和Softmax层进行分类。实验表明,所提方法在ISCX-VPN、ISCX-nonVPN、ISCX-Tor和ISCX-nonTor数据集上取得了较好的效果,准确率分别为96.88%、90.62%、99.24%和98.13%,有效提升了加密流量分类性能。 相似文献
5.
6.
深度学习就是机器学习研究的过程,主要通过模拟人脑分析学习的过程对数据进行分析。目前,深度学习技术已经在计算机视觉、语音识别、自然语言处理等领域获得了较大发展,并且随着该技术的不断发展,为网络流量分类和异常检测带来了新的发展方向。移动智能手机与大家的生活息息相关,但是其存在的安全问题也日益凸显。针对传统机器学习算法对于流量分类需要人工提取特征、计算量大的问题,提出了基于卷积神经网络模型的应用程序流量分类算法。首先,将网络流量数据集进行数据预处理,去除无关数据字段,并使数据满足卷积神经网络的输入特性。其次,设计了一种新的卷积神经网络模型,从网络结构、超参数空间以及参数优化方面入手,构造了最优分类模型。该模型通过卷积层自主学习数据特征,解决了传统基于机器学习的流量分类算法中的特征选择问题。最后,通过CICAndmal2017网络公开数据集进行模型测试,相比于传统的机器学习流量分类模型,设计的卷积神经网络模型的查准率和查全率分别提高了2.93%和11.87%,同时在类精度、召回率以及F1分数方面都有较好的提升。 相似文献
7.
一种基于半监督学习的应用层流量分类方法 总被引:3,自引:0,他引:3
基于应用层的流量分类在用户行为识别、网络带宽管理等方面有着十分重要的应用.将机器学习应用到应用层流量分类问题中.首先提出了一种基于熵函数的组合式特征选择算法,提取了5种TCP连接的特征.针对监督学习中无法识别新流量类型的问题,提出了一种基于半监督学习的流量分类算法.实验结果表明,算法的检测率优于Kmeans方法.在少量标记样本的情况下,随着未标记样本数增加,算法的检测率在增加. 相似文献
8.
精确的网络流量分类是实现互联网可控可管的关键,传统的单一分类算法需要构建基于特定假设的某种模型,算法对于待分类数据的分布要求高,不能满足复杂多变的网络流量的分类要求。基于此,采用多决策树组合的随机森林算法实现网络流量分类。通过实际网络流量数据实验表明,在各种情况下,随机森林算法都能显著改善网络流量特别是小比例样本的分类效果,算法降低了单一算法过于依赖特定假设模型的要求,对于待分类样本的分布要求低,随机森林算法具有良好的分类效果和鲁棒性。 相似文献
9.
10.
11.
12.
网络流量识别方法研究 总被引:5,自引:0,他引:5
随着P2P和多媒体流量的发展,原有的流量识别方法越来越显现出其不足.为识别这些流量,需要识别效率更高的识别方法.文中提出了一种混合流量识别方法,此方法将特征识别和会话行为映射方法相结合,进行精确的流量识别.接着给出了这种识别过程的流程图,对识别过程进行了说明.对包的识别是基于优先级的特征识别,以提高识别效率.通过实验,选取四种应用Monkey3,eDonkey2000,MSN messenger,BitTorrent流量,将这些单个流量和混合流量的识别结果进行了比较.由实验结果可得出该方法对混合流量识别率比单个流量识别率高. 相似文献
13.
针对单一分类方法在训练样本不足的情况下对于小样本网络流分类效果差的特点,通过自适应增强(Adaptive Boosting,AdaBoost)算法进行流量分类。算法首先使用CFS(Correlation-based Feature Selection)特征选择方法从大量网络流特征中提取出少量高效的分类特征,在此基础上,通过AdaBoost算法组合决策树、关联规则和贝叶斯等5种单一分类方法实现流量分类。实际网络流量数据测试表明,基于AdaBoost的组合分类方法的准确率在所选的几种算法中是最高的,其能够达到98192%,且相对于单一的分类算法,组合流量分类方法对于小样本网络流的分类效果具有明显提升。 相似文献
14.
The pervasive game environments have activated explosive growth of the Internet over recent decades. Thus, understanding Internet traffic characteristics and precise classification have become important issues in network management, resource provisioning, and game application development. Naturally, much attention has been given to analyzing and modeling game traffic. Little research, however, has been undertaken on the classification of game traffic. In this paper, we perform an interpretive traffic analysis of popular game applications at the transport layer and propose a new classification method based on a simple decision tree, called an alternative decision tree (ADT), which utilizes the statistical traffic characteristics of game applications. Experimental results show that ADT precisely classifies game traffic from other application traffic types with limited traffic features and a small number of packets, while maintaining low complexity by utilizing a simple decision tree. 相似文献
15.
Davide Adami Christian Callegari Stefano Giordano Michele Pagano Teresa Pepe 《International Journal of Communication Systems》2012,25(3):386-403
In the previous years, Skype has gained more and more popularity, since it is seen as the best VoIP software with good quality of sound, ease of use and one that works everywhere and with every OS. Because of its great diffusion, both the operators and the users are, for different reasons, interested in detecting Skype traffic. In this paper we propose a real‐time algorithm (named Skype‐Hunter) to detect and classify Skype traffic. In more detail, this novel method, by means of both signature‐based and statistical procedures, is able to correctly reveal and classify the signaling traffic as well as the data traffic (calls and file transfers). To assess the effectiveness of the algorithm, experimental tests have been performed with several traffic data sets, collected in different network scenarios. Our system outperforms the ‘classical’ statistical traffic classifiers as well as the state‐of‐the‐art ad hoc Skype classifier. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
17.
Since the year of 2006,peer-to-peer (P2P) streaming media service has been developing rapidly,the user scale and income scale achieve synchronous growth.However,while people enjoying the benefits of th... 相似文献
18.
19.
Traffic sampling is viewed as a prominent strategy contributing to lightweight and scalable network measurements. Although multiple sampling techniques have been proposed and used to assist network engineering tasks, these techniques tend to address a single measurement purpose, without detailing the network overhead and computational costs involved. The lack of a modular approach when defining the components of traffic sampling techniques also makes difficult their analysis. Providing a modular view of sampling techniques and classifying their characteristics is, therefore, an important step to enlarge the sampling scope, improve the efficiency of measurement systems, and sustain forthcoming research in the area. Thus, this paper defines a taxonomy of traffic sampling techniques resorting to a comprehensive analysis of the inner components of existing proposals. After identifying granularity , selection scheme , and selection trigger as the main components differentiating sampling proposals, the study goes deeper on characterizing these components, including insights into their computational weight. Following this taxonomy, a general‐purpose architecture is established to sustain the development of flexible sampling‐based measurement systems. Traveling inside packet sampling techniques, this paper contributes to a clearer positioning and comparison of existing proposals, providing a road map to assist further research and deployments in the area. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
随着现代科学技术的不断发展,现阶段信息采集和信息辨别的技术已经逐渐得到较大的发展,同时,随着互联网、大数据运算等新型先进技术的不断融入,信息识别的互通水平也逐渐得到了提升.在这种趋势下,人脸识别技术应运而生.人脸识别的全局特征和局部特征集成识别是十分重要的方面,文章对这一技术进行细致分析. 相似文献