首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical-electrical-optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.  相似文献   

2.
This article presents a novel protection approach using Generalized Multi-Protocol Label Switching (GMPLS). This strategy provides protection at the Wavelength Division Multiplexing (WDM) layer, meaning that all Internet Protocol Label-Switched Path (IP LSPs) nested inside a lightpath are protected in an aggregated way. It uses resources efficiently since spare capacity of working primary lightpaths can be used for backup purposes whenever necessary. The IP and WDM layers are treated together as a single integrated network from a control plane point of view, so that network state information from both layers can be used. Besides discussing the strategy proposed and the key features of GMPLS that will allow its implementation, we mathematically formulate the maximum throughput problem. Thereafter, we propose and compare heuristic algorithms for IP-over-WDM networks using three protection approaches: WDM lightpath protection, IP LSP protection, and the proposed protection scheme. Their throughputs and recovery times are analyzed and compared. Our results show that, for a representative mesh network, the proposed aggregated protection scheme presents better protection efficiency and good scalability properties when compared with the other two schemes.  相似文献   

3.
In wavelength‐division multiplexing (WDM) optical networks, the bandwidth request of a traffic stream can be much lower than the capacity of a lightpath. Efficiently grooming low‐speed connections onto high‐capacity lightpaths will improve the network throughput and reduce the network cost. In this paper, we propose and evaluate a new concept of traffic aggregation in WDM mesh networks that aims to eliminate both the bandwidth under‐utilization and scalability concerns that are typical in all‐optical wavelength routed networks. This approach relies on the multipoint‐to‐point lightpath concept. In order to assess the efficiency of our proposal, all underlying network costs are compared. To achieve this aim, we devise a new provisioning algorithm to map the multipoint‐to‐point lightpaths in the network. Our results show that the proposed aggregation technique can significantly improve the network throughput while reducing its cost. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
在IP over WDM网络中,光层可以通过建立新的光路来为IP层提供带宽.如何利用光层有限的资源使网络服务提供商的利润最大化是流量疏导的一个重要目标.文章基于迭加网络模型,研究IP/MPLS over WDM网络的准入机制,设计算法在不影响整体效率的前提下为网络提供区分服务.  相似文献   

5.
This paper proposes optical wavelength division multiplexed (WDM) networks with limited wavelength conversion that can efficiently support lightpaths (connections) between nodes. Each lightpath follows a route in a network and must be assigned a channel on each link along the route. The load λmax of a set of lightpaths is the maximum over all links of the number of lightpaths that use the link. At least λmax wavelengths will be needed to assign channels to the lightpaths. If the network has full wavelength conversion capabilities, then λmax wavelengths are sufficient to perform the channel assignment. Ring networks with fixed wavelength conversion capability within the nodes are proposed that can support all lightpath sets with load λmax at most W-1, where W is the number of wavelengths in each link. Ring networks with a small additional amount of wavelength conversion capability within the nodes are also proposed that allow the support of any set of lightpaths with load λmax at most W. A star network is also proposed with fixed wavelength conversion capability at its hub node that can support all lightpath sets with load λmax at most W. These results are extended to tree networks and networks with arbitrary topologies. This provides evidence that significant improvements in traffic-carrying capacity can be obtained in WDM networks by providing very limited wavelength conversion capability within the network  相似文献   

6.
Future telecommunication networks employing optical wavelength-division multiplexing (WDM) are expected to be increasingly heterogeneous and support a wide variety of traffic demands. Based on the nature of the demands, it may be convenient to set up lightpaths on these networks with different bit rates. Then, the network design cost could be reduced because low-bit-rate services will need less grooming (i.e., less multiplexing with other low-bit-rate services onto high-capacity wavelengths) while high-bit-rate services can be accommodated on a wavelength itself. Future optical networks may support mixed line rates (say over 10/40/100 Gbps). Since a lightpath may travel a long distance, for high bit rates, the effect of the physical impairments along a lightpath may become very significant (leading to high bit-error rate (BER)); and the signal’s maximum transmission range, which depends on the bit rate, will become limited.In this study, we propose a novel, cost-effective approach to design a mixed-line-rate (MLR) network with transmission-range (TR) constraint. By intelligent assignment of channel rates to lightpaths, based on their TR constraint, the need for signal regeneration can be minimized, and a “transparent” optical network can be designed to support all-optical end-to-end lightpaths. The design problem is formulated as an integer linear program (ILP). A heuristic algorithm is also proposed. Our results show that, with mixed line rates and maximum transmission range constraints, one can design a cost-effective network.  相似文献   

7.
One of the most important tasks for dynamic traffic grooming in IP/MPLS over WDM networks is to decide when and where to set up new lightpaths to provide bandwidth for the IP/MPLS layer. In this paper, we adapt the conventional saturated cut method to enhance the lightpath establishment capability of various traffic grooming policies proposed earlier. Heuristic modifications are also presented which provide almost the same level of performance with much lower complexity.  相似文献   

8.
This paper proposes a dynamic lightpath establishment scheme considering four-wave mixing (FWM) in multifiber wavelength-division multiplexed (WDM) all-optical networks. The FWM is one of the most important physical impairments to be resolved in WDM networks because the FWM induces nonlinear inter-channel crosstalk and decays the performance of WDM networks. In WDM networks, data are transmitted via lightpaths. When the effect of FWM crosstalk is large, it is highly possible that data transmission fails even if lightpaths are correctly established. The proposed scheme aims to avoid not only the blocking of lightpath establishment but also the accumulation of FWM crosstalk by means of ingenious selection of routes, wavelengths, and fibers for lightpath establishment. In the proposed scheme, a route and a wavelength are selected for each lightpath based on wavelength availability and wavelength placement of established lightpaths. Furthermore, fibers on the route are selected based on estimated FWM power. In this paper, we show the effectiveness of the proposed scheme through simulation experiments.  相似文献   

9.
We consider an IP-over-WDM network in which network nodes employ optical crossconnects and IP routers. Nodes are connected by fibers to form a mesh topology. Any two IP routers in this network can be connected together by an all-optical wavelength-division multiplexing (WDM) channel, called a lightpath, and the collection of lightpaths that are set up form a virtual topology. In this paper, we concentrate on single fiber failures, since they are the predominant form of failures in optical networks. Since each lightpath is expected to operate at a rate of few gigabits per second, a fiber failure can cause a significant loss of bandwidth and revenue. Thus, the network designer must provide a fault-management technique that combats fiber failures. We consider two fault-management techniques in an IP-over-WDM network: (1) provide protection at the WDM layer (i.e., set up a backup lightpath for every primary lightpath) or (2) provide restoration at the IP layer (i.e., overprovision the network so that after a fiber failure, the network should still be able to carry all the traffic it was carrying before the fiber failure). We formulate these fault-management problems mathematically, develop heuristics to find efficient solutions in typical networks, and analyze their characteristics (e.g., maximum guaranteed network capacity in the event of a fiber failure and the recovery time) relative to each other  相似文献   

10.
Due to the rapid growth of various applications, the network devices scale and complexity are significantly increased. Meanwhile, to deal with the burst IP traffic, the network devices need to provide continuous services, which will result in the excessive power consumption. Meanwhile, with the development of IP network and intelligent optical switch network, the backbone network tends to be an IP over wavelength-division-multiplexing (WDM) network. Therefore, it has attracted wide interests in both academic and industrial communities to build power-efficient (i.e., green) IP over WDM network, where we can switch several IP-level requests as one unit in the WDM optical layer. This method is called hybrid grooming and it requires less component power than that of electronic IP routers in the IP layer. Under this hybrid approach, the traffic grooming multiplexes many IP-level requests into a high-capacity lightpath; meanwhile the reduction in power consumed by optical-electrical-optical conversions is achieved through optical bypass. However, the power consumed by components used to establish lightpaths should also be considered. One network with the higher power efficiency not only saves more power followed by hybrid grooming but also requires the lower power consumption of establishing lightpaths. In this paper, to improve the power efficiency of dynamic IP over WDM network, we design two kinds of Wavelength Integrated Auxiliary Graphs (WIAGs), each of which contains one Virtual Topology Layer and multiple Wavelength-Plane Layers. Based on WIAGs, we propose two heuristic algorithms named single-hop grooming with considering power efficiency and multi-hop grooming with considering power efficiency (MGPE) since grooming is NP-hard. Simulation results demonstrate that MGPE obtains the higher power efficiency, although it has the slightly higher time complexity; the power efficiency mainly depends on the kind of grooming strategy (single- or multi-hop) we use while the increasing number of available transceivers in each node cannot improve the power efficiency, although it can make blocking probability decrease.  相似文献   

11.
基于ATM/MPLS技术的通信网络是承载宽带多媒体业务的综合平台。为了对承载业务进行抗毁保护,对ATM的最基本的1+1、1∶1、m∶n抗毁保护结构进行了研究和总结。同时结合网络传输层,如:PDH、SDH、WDM、MPLS的保护和应用层业务,如:IP、电路交换、以太网和帧中继的抗毁迂回策略,提出了ATM的多层次抗毁自恢复组网结构,为ATM的应用研究提供了借鉴。  相似文献   

12.
《IEEE network》2001,15(4):46-54
This article presents a broad overview of the architectural and algorithmic aspects involved in deploying an optical cross-connect mesh network, starting from the network design and capacity planning phase to the real-time network operation phase involving dynamic provisioning and restoration of lightpaths and online algorithms for route computation. Frameworks for offline design and capacity planning of optical networks based on projected future lightpath demands are discussed. The essential components of an IP-centric control architecture for dynamic provisioning and restoration of lightpaths in optical networks are outlined. These include neighbor discovery, topology discovery, route computation, lightpath establishment, and lightpath restoration. Online algorithms for route computation of unprotected, 1+1 protected and mesh-restored lightpaths are discussed in both the centralized and distributed scenarios  相似文献   

13.
In general, multicast routing and wavelength assignment (MC-RWA) can be subdivided in routing and wavelength assignment issues in wavelength-division multiplexing (WDM) mesh networks. Previous studies on WDM multicast have mainly focused on WDM multicast routing. The multicast wavelength assignment problem is studied in this paper. A unicast routing path can be established by a lightpath in an all-optical network. However, in the multicasting case, a multicast routing tree can be established by a single light-tree or several lightpaths, or a combination of several light-trees and lightpaths. We propose a wavelength assignment algorithm for finding an optimal combination of lightpaths and light-trees to construct a newly required multicast session. First of all, two cost functions are given to evaluate the establishing cost for each feasible wavelength, and then find a set of wavelengths that covers all destinations with the minimal cost using Integer Linear Programming (ILP) formulation. We focus on maximizing the total number of users served in a multicast session and the network capacity. The simulation results show that the proposed algorithm can improve system resource utilization and reduce the blocking probability compared with the First-Fit algorithm.This research was partially supported by the Grant of National Science Council, R.O.C. (NSC 94-2745-E-155-007-URD).  相似文献   

14.
The need for on‐demand provisioning of wavelength‐routed channels with service‐differentiated offerings within the transport layer has become more essential because of the recent emergence of high bit rate Internet protocol (IP) network applications. Diverse optical transport network architectures have been proposed to achieve the above requirements. This approach is determined by fundamental advances in wavelength division multiplexing (WDM) technologies. Because of the availability of ultra long‐reach transport and all‐optical switching, the deployment of all‐optical networks has been made possible. The concurrent transmission of multiple streams of data with the assistance of special properties of fiber optics is called WDM. The WDM network provides the capability of transferring huge amounts of data at high speeds by the users over large distances. There are several network applications that require the support of QoS multicast, such as multimedia conferencing systems, video‐on‐demand systems, real‐time control systems, etc. In a WDM network, the route decision and wavelength assignment of lightpath connections are based mainly on the routing and wavelength assignment (RWA). The multicast RWA's task is to maximize the number of multicast groups admitted or minimize the call‐blocking probability. The dynamic traffic‐grooming problem in wavelength‐routed networks is generally a two‐layered routing problem in which traffic connections are routed over lightpaths in the virtual topology layer and lightpaths are routed over physical links in the physical topology layer. In this paper, a multicast RWA protocol for capacity improvement in WDM networks is designed. In the wavelength assignment technique, paths from the source node to each of the destination nodes and the potential paths are divided into fragments by the junction nodes and these junction nodes have the wavelength conversion capability. By using the concept of fragmentation and grouping, the proposed scheme can be generally applied for the wavelength assignment of multicast in WDM networks. An optimized dynamic traffic grooming algorithm is also developed to address the traffic grooming problem in mesh networks in the multicast scenario for maximizing the resource utilization and minimizing the blocking probability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In WDM networks, path protection has emerged as a widely accepted technique for providing guaranteed survivability of network traffic. However, it requires allocating resources for backup lightpaths, which remain idle under normal fault-free conditions. In this paper, we introduce a new design strategy for survivable network design, which guarantees survivability of all ongoing connections that requires significantly fewer network resources than protection based techniques. In survivable routing, the goal is to find a Route and Wavelength Assignment (RWA) such that the logical topology remains connected for all single link failures. However, even if the logical topology remains connected after any single link fault, it may not have sufficient capacity to support all the requests for data communication, for all single fault scenarios. To address this deficiency, we have proposed two independent but related problem formulations. To handle our first formulation, we have presented an Integer Linear Program (ILP) that augments the concept of survivable routing by allowing rerouting of sub-wavelength traffic carried on each lightpath and finding an RWA that maximizes the amount of traffic that can be supported by the network in the presence of any single link failure. To handle our second formulation, we have proposed a new design approach that integrates the topology design and the RWA in such a way that the resulting logical topology is able to handle the entire set of traffic requests after any single link failure. For the second problem, we have first presented an ILP formulation for optimally designing a survivable logical topology, and then proposed a heuristic for larger networks. Experimental results demonstrate that this new approach is able to provide guaranteed bandwidth, and is much more efficient in terms of resource utilization, compared to both dedicated and shared path protection schemes.  相似文献   

16.
With the widespread deployment of Internet protocol/wavelength division multiplexing (IP/WDM) networks, it becomes necessary to develop traffic engineering (TE) solutions that can effectively exploit WDM reconfigurability. More importantly, experimental work on reconfiguring lightpath topology over testbed IP/WDM networks is needed urgently to push the technology forward to operational networks. This paper presents a performance and testbed study of topology reconfiguration for IP/WDM networks. IP/WDM TE can be fulfilled in two fashions, overlay vs. integrated, which drives the network control software, e.g., routing and signaling protocols, and selects the corresponding network architecture model, e.g., overlay or peer-to-peer. We present a traffic management framework for IP over reconfigurable WDM networks. Three "one-hop traffic maximization"-oriented heuristic algorithms for lightpath topology design are introduced. A reconfiguration migration algorithm to minimize network impact is presented. To verify the performance of the topology design algorithms, we have conducted extensive simulation study. The simulation results show that the topologies designed by the reconfiguration algorithms outperform the fixed topology with throughput gain as well as average hop-distance reduction. We describe the testbed network and software architecture developed in the Defense Advanced Research Projects Agency (DARPA) Next Generation Internet (NGI) SuperNet Network Control and Management project and report the TE experiments conducted over the testbed.  相似文献   

17.
Optical networks are expected to cater for the future Internet due to the high speed and capacity that they offer. Caching in the core network has proven to reduce power usage for various video services in current optical networks. This paper investigates whether video caching will still remain power efficient in future optical networks. The study compares the power consumption of caching in a current IP over WDM core network to a future network. The study considers a number of features to exemplify future networks. Future optical networks are considered where: (1) network devices consume less power, (2) network devices have sleep-mode capabilities, (3) IP over WDM implements lightpath bypass, and (4) the demand for video content significantly increases and high definition video dominates. Results show that video caching in future optical networks saves up to 42% of power consumption even when the power consumption of transport reduces. These results suggest that video caching is expected to remain a green option in video services in the future Internet.  相似文献   

18.
This paper investigates the problem of dynamic survivable lightpath provisioning against single-node/link failures in optical mesh networks employing wavelength-division multiplexing (WDM).We unify various forms of segment protection into generalized segment protection (GSP). In GSP, the working path of a lightpath is divided into multiple overlapping working segments, each of which is protected by a node-/link-disjoint backup segment. We design an efficient heuristic which, upon the arrival of a lightpath request, dynamically divides a judiciously selected working path into multiple overlapping working segments and computes a backup segment for each working segment while accommodating backup sharing. Compared to the widely considered shared-path protection scheme, GSP achieves much lower blocking probability and shorter protection-switching time for a small sacrifice in control and management overhead.On the basis of generalized segment protection, we present a new approach to provisioning lightpath requests according to their differentiated quality-of-protection (QoP) requirements. We focus on one of the most important QoP parameters—namely, protection-switching time—since lightpath requests may have differentiated protection-switching-time requirements. For example, lightpaths carrying voice traffic may require 50 ms protection-switching time while lightpaths carrying data traffic may have a wide range of protection-switching-time requirements. Numerical results show that our approach achieves significant performance gain which leads to a remarkable reduction in blocking probability.While our focus is on the optical WDM network, the basic ideas of our approaches can be applied to multi-protocol label switching (MPLS) networks with appropriate adjustments, e.g., differentiated bandwidth granularities.  相似文献   

19.
《IEEE network》2000,14(6):8-15
As the phenomenal advance in optical WDM networking technologies continues, optical WDM network equipment has been deployed not only in backbone networks, but also in regional, metropolitan, and access networks. It is widely believed that a major component of the next-generation Internet will be an IP-based optical network employing WDM. WDM wavelength routing and signaling have become an active research field, and dynamic and adaptive wavelength routing and assignment algorithms have been proposed. However, there is less work on reporting network control and management system implementation efforts over testbed WDM networks. This article presents a network management and visualization framework aimed at guiding the development of management applications for reconfigurable WDM optical networks. A layered framework architecture including element and network management and visualization is provided, and an object-based information model representing the WDM network is introduced. Functional components on reconfiguration, software agent, and network visualization services are presented, and important issues related to optical lightpath generation are discussed. A network visualization service also provides WDM control and management APIs to applications and access networks such as an IP network management system. To illustrate the usage of the framework, we share our experience in implementing the MONET network control and management system, and present network visualization views obtained from the MONET WDM network to highlight the framework features.  相似文献   

20.
Traffic grooming in an optical WDM mesh network   总被引:7,自引:0,他引:7  
In wavelength-division multiplexing (WDM) optical networks, the bandwidth request of a traffic stream can be much lower than the capacity of a lightpath. Efficiently grooming low-speed connections onto high-capacity lightpaths will improve the network throughput and reduce the network cost. In WDM/SONET ring networks, it has been shown in the optical network literature that by carefully grooming the low-speed connection and using wavelength-division multiplexer (OADM) to perform the optical bypass at intermediate nodes, electronic ADMs can be saved and network cost will be reduced. In this study, we investigate the traffic-grooming problem in a WDM-based optical mesh topology network. Our objective is to improve the network throughput. We study the node architecture for a WDM mesh network with traffic-grooming capability. A mathematical formulation of the traffic-grooming problem is presented in this study and several fast heuristics are also proposed and evaluated  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号