首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known regarding the molecules expressed by gingival epithelial cells that are involved in initiating and maintaining inflammation following the interaction with periodontal pathogens. Thus, we investigated the effect of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis infection on the expression of neutrophil chemoattractant interleukin 8 (IL-8) and the adhesion molecule intercellular adhesion molecule-1 by gingival epithelial cells. The data revealed that both IL-8 and intercellular adhesion molecule-1 expression increased after infection with A. actinomycetemcomitans (IL-8: 2- to 7-fold; intercellular adhesion molecule-1: 2.5- to 3.7-fold). IL-8 secretion reached a maximal level 6 h after the infection and the expression subsequently decreased to basal level. The increased cell surface intercellular adhesion molecule-1 expression started at 4 h after infection and reached a maximal level 14 h after the infection. In contrast, the expression of both molecules rapidly decreased 2 h after challenge with P. gingivalis. This opposite influence of A. actinomycetemcomitans and P. gingivalis infection on the expression of IL-8 and intercellular adhesion molecule-1 by gingival epithelial cells suggests that A. actinomycetemcomitans infection may initiate the recruitment of neutrophils, whereas the P. gingivalis infection may retard this process and therefore demonstrate a distinct perspective of virulence.  相似文献   

2.
We examined the role of angiotensin II (AII) receptor subtypes in the regulation of hormone-stimulated cyclic AMP (cAMP) accumulation in isolated rat glomeruli. All inhibited cAMP formation induced by histamine, serotonin and parathyroid hormone, but not by prostaglandin E2 or calcitonin gene-related peptide. Angiotensin III but not the angiotensin fragments (1-7) and (3-8) also showed inhibitory activity. The inhibition of histamine-induced cAMP accumulation by AII was concentration-dependent and was absent in glomeruli isolated from pertussis toxin-treated rats. The effect of AII on histamine-induced cAMP levels was not mimicked by the protein kinase C activator, phorbol-12-myristate-13-acetate, nor was the effect of AII inhibited by the protein kinase C inhibitors, staurosporine and H-7. The angiotensin II receptor subtype 1 (AT1) antagonists, SK&F 108566 and losartan, attenuated the inhibitory effect of AII on histamine-stimulated cAMP accumulation, whereas the AT2 selective antagonists, CGP 42112A, WL-19 and PD 123319, had no effect. Displacement of [125I]AII from glomerular membrane using the subtype-selective antagonists confirmed that the glomerular AII receptor has characteristics of an AT1 subtype. The results suggest that AII, through activation of the AT1 receptor, may act to maintain the contractile state of glomerular mesangial cells by attenuating the increase in cAMP levels induced by some hormones.  相似文献   

3.
Angiotensin II (Ang II) interaction with the neuronal AT1 receptor results in a chronic stimulation of neuromodulation that involves the expression of norepinephrine transporter (NET) and tyrosine hydroxylase (TH). In view of this unique property and the presence of putative nuclear localization signal (NLS) consensus sequence in the AT1 receptor, this study was conducted to investigate the hypothesis that Ang II would induce nuclear sequestration of this G protein-coupled receptor and that the sequestration may have implications on Ang II-induced expression of NET and TH genes. Incubation of neuronal cultures with Ang II caused a time- and dose-dependent increase in the levels of AT1 receptor immunoreactivity in the nucleus. A 6.7-fold increase was observed with 100 nM Ang II, in 15 min, that was blocked by losartan, an AT1 receptor-specific antagonist. Ang II-induced nuclear sequestration was specific for AT1 receptor, because Ang II failed to produce a similar effect on neuronal AT2 receptors. The presence of the putative NLS sequence in the cytoplasmic tail of the AT1 receptor seems to be the key in nuclear targeting because: 1) nuclear targeting was attenuated by a peptide of the AT1 receptor that contained the putative NLS sequence; and 2) Ang II failed to cause nuclear translocation of the AT2 receptor, which does not contain the putative NLS. Ang II also caused a time- and dose-dependent stimulation of P62 phosphorylation, a glycoprotein of the nuclear pore complex. A 6-fold stimulation of phosphorylation was observed with 100 nM Ang II, in 15 min, that was completely blocked by losartan and not by PD123,319, an AT2 receptor specific antagonist. Preloading of neurons with p62-pep (a peptide containing consenses of mitogen-activated protein kinase in p62) resulted in a loss of Ang II-induced p62 phosphorylation and stimulation of NET and TH messenger RNA levels. In conclusion, these data demonstrate that Ang II induces nuclear sequestration of AT1 receptor involving NLS in the AT1 receptor and p62 of the nuclear pore complex in brain neurons. A possible role of such a nuclear targeting of the AT1 receptor on chronic neuromodulatory actions of Ang II has been discussed.  相似文献   

4.
5.
Poly(acrylic acid) gels containing 5-fluorouracil (5-FU) and tetrahydrogeraniol (THG) were prepared and the effects of THG on 5-FU permeation across the excised rat skin were studied by in vitro methods. Experiments on in vitro permeation of 5-FU across the skin with vertical diffusion cells showed that addition of THG to the gels markedly enhanced the 5-FU permeability. Increasing the THG concentration in the gels to 8% proportionally increased the permeability of 5-FU. More than 12 h was required to reach a steady-state level of 5-FU after administration of 5-FU-THG gel topically. The permeability parameters such as flux, permeability coefficient and enhancement ratio were determined. The results indicated a maximum flux of 252.91+/-9.61 microgram/cm2 per h, and the enhancement ratio of 31.22+/-1.18 when the THG concentration was 8%. Synergistic effects of propylene glycol (PG) with THG were also investigated and a maximum flux of 256.81+/-9.15 microgram/cm2 per h, was obtained when the PG concentration was 5% and THG was 8%. The corresponding enhancement ratio was 31.71+/-1.13. These results suggest not only that THG would be very useful for increasing the skin permeability of 5-FU, but also that THG being a natural product might be useful for developing transdermal therapeutic systems for the delivery of practically unabsorbable drugs.  相似文献   

6.
Angiotensin II (Ang II) and nitric oxide (NO) regulate a variety of physiological functions. In this study, we suggest that inhaled Ang II produces an initial bronchodilation apparently by stimulating NO production via AT1 receptors. Also, we demonstrate that following the initial bronchodilation, Ang II causes bronchoconstriction in the guinea pig, also via AT1 receptors. Both of the findings are important for our understanding of airway functions induced by Ang II.  相似文献   

7.
An early event in signaling by the G-protein-coupled angiotensin II (Ang II) AT1 receptor in vascular smooth muscle cells is the tyrosine phosphorylation and activation of phospholipase Cgamma1 (PLCgamma1). In the present study, we show that stimulation of this event by Ang II in vascular smooth muscle cells is accompanied by binding of PLCgamma1 to the AT1 receptor in an Ang II- and tyrosine phophorylation-dependent manner. The PLCgamma1-AT1 receptor interaction appears to depend on phosphorylation of tyrosine 319 in a YIPP motif in the C-terminal intracellular domain of the AT1 receptor and binding of the phosphorylated receptor by the most C-terminal of two Src homology 2 domains in PLCgamma1. PLCgamma1 thus binds to the same site in the receptor previously identified for binding by the SHP-2 phosphotyrosine phosphatase.JAK2 tyrosine kinase complex. A single site in the C-terminal tail of the AT1 receptor can, therefore, be bound in a ligand-dependent manner by two different downstream effector proteins. These data demonstrate that G-protein-coupled receptors can physically associate with intracellular proteins other than G proteins, creating membrane-delimited signal transduction complexes similar to those observed for classic growth factor receptors.  相似文献   

8.
9.
10.
The present ligand binding study showed that the rabbit pulmonary artery contained two subtypes of losartan-sensitive angiotensin receptor. The two receptor subtypes are differentially distributed. The high affinity receptor subtype is located predominantly in the cardia end of the artery while the low affinity receptor subtype is found mainly in the pulmonary portion of the artery. The Kd for the high and low affinity receptors for sar1, Ile8-angiotensin II was found to be 0.25 +/- 0.005 and 0.88 +/- 0.02 nM, respectively; and for angiotensin II to be 0.43 +/- 0.001 and 0.96 +/- 0.02 nM, respectively. In the presence of 1 mM GppNHp, the high affinity receptor subtype was converted to the low affinity subtype, indicating that it is G-protein coupled. 1 mM GppNHp had no effect on the low affinity receptor subtype. The present data support the findings of an earlier functional study which also showed the existence and similar differential distribution of two losartan-sensitive angiotensin receptors in the rabbit pulmonary artery. However, the significance of these findings in regard to the regulation of pulmonary circulation in normal and pathological conditions remains to be investigated.  相似文献   

11.
Our previous studies have shown that three sigma (sigma) receptor ligands, (+)-N-allylnormetazocine ((+)-SKF-10,047), (+/-)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG) differently regulated the dopamine (DA) transmission in the rat brain. In the present study, we attempted to clarify the role of sigma 1 receptor subtype in the regulation of DA transmission using a novel and selective sigma 1 receptor agonist, 1-(3,4-dimethoxyphenethyl)-4(3-phenylpropyl)piperazine dihydrochloride (SA4503) in the rat brain. Acute administration of SA4503 (1.0 mg/kg, p.o.) significantly increased DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the rat frontal cortex, but not in the other six regions, hippocampus, striatum, midbrain, cerebellum, medulla/pons and hypothalamus. The increase of cortical DA level elicited by SA4503 was fully reversed by N,N-dipropyl-2-(4-methoxy-3-(2-phenylethoxy)phenyl)ethylamine (NE-100) (0.25 mg/kg, p.o.), a putative sigma 1 receptor antagonist. In addition, SA4503 (1.0 mg/kg, p.o.) showed an increase of cortical L-3,4-dihydroxyphenylalanine (L-DOPA) accumulation under the inhibition of dopa decarboxylase activity with m-hydrobenzylhydrazine (NSD-1015), suggesting that SA4503 has activated the cortical DA synthesis rate. These results suggest that the sigma 1 receptor subtype plays an important role in the facilitation of cortical DA transmission. In addition, this phenomenon is partially involved in the augmentation of DA synthesis rate.  相似文献   

12.
We studied protein binding and structural features of perfect and imperfect composite (gt)n(ga)m blocks from different HLA-DRB1 alleles in their original genomic and artificial environments. The major retarded protein/DNA complex of the genomic (gt)n(ga)m fragments comprises a zinc-dependent protein present in nuclear extracts from different cell types. The protein binding is characterized by moderate affinities independent of the polymorphic form of the physiological microsatellite allele. The binding affinity depends on the 5' and 3' adjacent single copy parts. DNase I footprinting of genome-derived fragments revealed that the 5' adjacent sequence and the (gt)n repeat are preferentially protected on the (gt)n(ga)m strand. Comparing three alleles, a regular pattern of footprints was not detectable in the (gt)n part, indicating that the zinc-dependent protein recognizes structural rather than sequence-specific features in this region. Chemical probing resulted in a pattern characteristic for Z-DNA in the (gt)n tract of the fragments. However, EMSA experiments using the Z-DNA specific monoclonal antibody mABZ-22 did not prove the presence of Z-DNA. As demonstrated by chemical modifications of the different (ga)m targets, only one of three (gt)n(ga)m fragments formed intramolecular triplexes of the type H-y3 and H-y5. DNase I footprinting revealed only weak protection, if any, in the homopurine tract. Rather, the (tc)m strands are hypersensitive for DNase I. This is probably due to structural conversions into intramolecular *H-triplexes after binding of HIZP.  相似文献   

13.
The effect of central administration of angiotensin II (AII) on cerebrospinal fluid (CSF) formation was studied in pentobarbital-anesthetized, artificially-ventilated rats. CSF production was measured by the ventriculocisternal perfusion method with Blue Dextran 2000 as the indicator. Baseline value of CSF production was 3.35 +/- 0.08 microliters/min. Intracerebroventricular (i.c.v.) infusion of AII at rates of 0.5 and 5 pg/min significantly lowered (P < 0.01) CSF formation by 23% and 16%, respectively. In comparison, high peptide doses (50 and 500 pg/min) did not alter this parameter. The inhibitory effect of low AII doses on CSF formation was blocked by the i.c.v. AT1 receptor subtype antagonists, losartan and SK&F 108566 (2.4 and 2.7 ng/min, respectively), but not by the AT2 receptor subtype-specific agent, PD 123319 (3.8 ng/min). Peptide AII antagonists, [Sar1,Ile8]AII (5 ng/min), which binds to both AT1 and AT2 receptors, had a similar effect to those of AT1-specific blockers. It is concluded that AII, by controlling CSF formation, may influence the water and electrolyte balance in the brain.  相似文献   

14.
Children taught to sequence pairs of visual stimuli also performed additional sequences without direct training. In Experiment 1, the children were trained to produce a six-stimulus sequence (A > B > C > D > E > F) with one set of forms, and five overlapping two-stimulus sequences (A > B, B > C, C > D, D > E, and E > F) with another set of forms. Few of the children succeeded on tests for the untrained two- (e.g., B > D and B > E) and six-stimulus sequences derivable from the two-stimulus training. The children in Experiments 2 and 3 received only the overlapping sequence training before testing with refined protocols: Nearly all succeeded on tests of emergent sequences involving two, three, four, five, and six stimuli. The results suggest methods for examining transitive relations between pairs of the stimuli used in training and the development of a relation of order among all six of the stimuli involved.  相似文献   

15.
The present study was designed to determine the cellular signaling mechanisms responsible for mediating the effects of angiotensin II on proximal tubular Na+,K+-ATPase activity. Angiotensin II produced a biphasic effect on Na+,K+-ATPase activity: stimulation at 10(-13) - 10(-10) M followed by inhibition at 10(-7) - 10(-5) M of angiotensin II. The stimulatory and inhibitory effects of angiotensin II were antagonized by losartan (1nM) suggesting the involvement of AT1 receptor. Angiotensin II produced inhibition of forskolin-stimulated cAMP accumulation at 10(-13) - 10(-10) M followed by a stimulation in basal cAMP levels at 10(-7) - 10(-5) M. Pretreatment of proximal tubules with losartan (1nM) antagonized both the stimulatory and inhibitory effects of angiotensin II on cAMP accumulation. Pretreatment of the proximal tubules with pertussis toxin (PTx) abolished the stimulation of Na+,K+-ATPase activity but did not affect the inhibition of Na+,K+-ATPase activity produced by angiotensin II. Pretreatment of the tubules with cholera toxin did not alter the biphasic effect of angiotensin II on Na+,K+-ATPase activity. Mepacrine (10microM), a phospholipase A2 (PLA2) inhibitor, reduced only the inhibitory effect of angiotensin II on Na+,K+-ATPase activity. These results suggest that the activation of AT1 angiotensin II receptors stimulates Na+,K+-ATPase activity via a PTx-sensitive G protein-linked inhibition of adenylyl cyclase pathway, whereas the inhibition of Na+,K+-ATPase activity following AT1 receptor activation involves multiple signaling pathways which may include stimulation of adenylyl cyclase and PLA2.  相似文献   

16.
17.
RENIN-ANGIOTENSIN ANTAGONISTS: The renal effects of angiotensin II receptor antagonists (AT1 blockers) can be compared with another class of drugs inhibiting the renin-angiotensin-aldosterone system, i.e. the angiotensin I converting enzyme inhibitors (ACE1). SIMILAR BUT SPECIFIC EFFECTS: The renal effects of these two classes of drugs are similar but each class has specific effects explained by several mechanisms. i) The system includes a large number of active peptides (angiotensin II, angiotensin III, angiotensin 1-7) which exert various effects according to their specific receptor(s): ii) several types of angiotensin II receptors have been identified (AT1, AT2, AT4 ...). Only AT1 blockers are available in clinical practice. iii) Receptor or enzyme blockade can produce varying effects; ACE inhibition is not specific since increased bradykinin activity is associated with the suppression of angiotensin peptide generation. EXPERIMENTAL AND CLINICAL TRIALS: Experimental and recent clinical studies have shown that AT1 blockers can induce, like ACE1, hypotension, renal vasodilation and natriuresis. The definite effects on discrete renal structures (vessels, glomeruli, tubules) differ however in magnitude which may suggest specific indications according to the pathophysiological background (renal disease, congestive heart failure, etc.).  相似文献   

18.
Angiotensin AT2 receptors have been shown to play a role in cell differentiation characterized by neurite outgrowth in neuronal cells of different origin. To further investigate AT2 receptor-mediated events leading to neurite formation, we examined the effect of AT2 receptor stimulation on the microtubule components, beta-tubulin, MAP1B and MAP2, by Western blot analysis and immunofluorescence in quiescent and nerve growth factor (NGF)-differentiated PC12W cells. These proteins are involved in neurite extension and neuronal maturation. Whereas NGF (0.5, 10, and 50 ng/ml) up-regulated these proteins after 3 days of stimulation, angiotensin II (ANG II; 10(-7) M) induced a different pattern. In quiescent PC12W cells, AT2 receptor stimulation up-regulated polymerized beta-tubulin and MAP2 but down-regulated MAP1B protein levels. In PC12W cells, differentiated by NGF (0.5 ng/ml), ANG II elevated polymerized beta-tubulin and reduced MAP1B. All ANG II effects were abolished by the AT2 receptor antagonist PD123177 (10(-5) M) but not affected by the AT1 receptor antagonist losartan (10(-5) M). These results implicate a specific role of AT2 receptors in cell differentiation and nerve regeneration via regulation of the cytoskeleton.  相似文献   

19.
Estrogen receptor-alpha contains two transactivation functions, a weak constitutive activation function (AF-1) and a hormone-dependent activation function (AF-2). AF-2 works by recruiting a large coactivator complex, composed of one or more p160s, CREB-binding protein (CBP)/p300, and P/CAF (p300 and CBP-associated factor), via direct contacts with the p160s. We report here that independent AF-1 activity also requires p160 contacts. Unlike AF-2, which binds signature NR boxes in the center of the p160 molecule, AF-1 binds to sequences near the p160 C terminus. We propose that the ability of AF-1 and AF-2 to interact with separate surfaces of the same coactivator is important for the ability of these transactivation functions to synergize.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号