首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Characterisation of the SVEA-96 Optima2 boiling water reactor assembly, in terms of the radial distributions of normalised total fission and 238U capture rates, is reported at its central elevation, i.e. at the 92-pin section, where the one-third part-length pins are replaced by water. Measurements performed in the PROTEUS facility are compared with MCNPX predictions. The calculation model included the measured locations of the SVEA-96 Optima2 assemblies and sub-assemblies, within the PROTEUS test zone. Predicted and experimental fission and 238U capture rates are found to agree, respectively, within 3.5% and 4% for all pins. Fission rates in the burnable-absorber UO2–Gd2O3 fuel pins have been predicted without bias using the ENDF/B-VI data library but show an average 1.4% under-prediction with the JEFF-3.1 data library. A slight overestimation of the total fission rate in the pins located at the periphery of the assemblies was observed and has been attributed to an inaccurate modelling of the pin positions. However, there was no systematic bias observed due to the absence of the one-third pins at the corners of the assembly.  相似文献   

2.
As part of a joint research programme between the Paul Scherrer Institute (PSI) and swissnuclear, with the co-operation of the Leibstadt nuclear power plant in Switzerland and fuel suppliers Westinghouse Sweden, measurements and calculations have been made of the axial and radial distributions of fission and 238U capture rates in the fuel rods of a Westinghouse SVEA-96 Optima2 boiling water reactor assembly. The measurements, made in the zero-energy research reactor PROTEUS at PSI, have been compared with calculations carried out using the Monte Carlo code MCNPX. The results reported are for the regions near the ends of the part-length fuel rods, which are a feature of SVEA-96 Optima2 assemblies. The sudden increase in moderation above the ends of the part-length rods leads to power peaking in the adjacent rods. Careful attention needs to be given to this phenomenon in the deployment of such fuel, the present paper providing experimental evidence for the ability of a stochastic code to predict such effects.  相似文献   

3.
The present paper concerns a novel type of integral database generated in the course of the LWR–PROTEUS Phase I experiments, viz. the relative reactivity effects of removing individual fuel pins from a highly heterogeneous BWR assembly. The measurements reported were conducted in the central assembly of a 3 × 3 test-zone configuration of SVEA-96+ assemblies in PROTEUS, under full-density water moderation conditions. Calculations of the pin-removal reactivity worths have been carried out using two different LWR assembly codes, viz. CASMO-4 and BOXER. The discrepancies observed between experiment and calculation have been analysed in detail, on the basis of an extended reactivity decomposition methodology. This has allowed quantification of the different phase-space contributions (in terms of reaction rate types, energy groups and spatial regions) of a given calculated pin-removal reactivity worth, thus providing useful insights regarding the most important sources of error in each of the assembly codes investigated.  相似文献   

4.
Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity.  相似文献   

5.
KAERI (Korea Atomic Energy Research Institute) has been developing an accelerator driven transmutation system called HYPER (hybrid power extraction reactor). It is designed to transmute long-lived TRU and fission products such as Tc-99 and I-129. HYPER is a 1000 MWth system with keff = 0.98 which requires 17 mA proton beam for an operation at EOC (end of cycle). Pb–Bi is used as the coolant and target material at the same time. HYPER core has 186 ductless hexagonal fuel assemblies. The fuel blanket is divided into three TRU (transuranic elements) enrichment zones to flatten the radial power distribution. The core height of HYPER was compromised at 150 cm, and the power density was determined such that the average coolant speed could be about 1.64 m/s. The inlet and exit coolant temperatures are 340 and 490 °C, respectively, in the core. The cylindrical beam tube and spherical window is adopted as the basic window design of HYPER. We have also introduced an Lead–Bismuth eutectic injection tube to maximize the allowable proton beam current. A metallic alloy of U-TRU-Zr is considered as the HYPER fuel, in which pure lead is used as the bonding material. As a result, a large gas plenum is placed above the active core. TRU transmutation rate is 282 kg/yr. In the case of a FP transmutation, 28.0 kg of Tc-99 and 7.0 kg of I-129 are incinerated per year. The MACSIS-H (metal fuel performance analysis code for simulating the in-reactor behavior under steady-state conditions-HYPER) for an metallic fuel was developed as the steady-state performance computer code. The MATRA (multichannel analyzer for transient and steady-state in rod array) code was used to perform the thermal-hydraulic analysis of HYPER core.  相似文献   

6.
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is ∼360 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.  相似文献   

7.
Reactor poolside measurements of gamma radiation specific for the fission product 140La (1596 keV) have been used for an experimental determination of axial power distributions in 55 nuclear fuel rods irradiated in the Barsebäck 1 BWR nuclear power plant. The measurements take advantage of the unique situation of a very short last reactor cycle of only three months due to the out-phasing of the reactor unit at November 30 1999. 140La whose decay is controlled by the mother nuclide 140Ba with the half-life 12.75 days reflects an average power distribution, representative for the latest weeks of core operation (in this case basically during November 1999). The measured intensities have been transformed into a 25 nodal representation to allow a precise and direct comparison with the corresponding calculated power distribution. The 55 rods were selected from two different fuel assemblies with average burn-ups of 1.9 and 9.7 MWd/kgU, respectively (that is one fresh bundle and one slightly more than one cycle bundle). The stability and the linearity of the measurement system were evaluated. The linearity was checked using the two-source method. The stability was checked by recurrent measurements on a reference fuel rod. The results have been used in the validation of the pin power reconstruction model of Westinghouse 3D core simulator POLCA-7. The deviation between measured and calculated 140Ba concentration (expressed as radial error) is typically a few percent on rod level. Results indicate that also Gd-rods are properly modelled over a broad range of conditions. It is indicated that predictions for fuel rods in their first month of operation are less accurate than for the rest of the rods.  相似文献   

8.
9.
The sensitivity of the fuel failure detection system based on the delayed neutron measurement in the primary cooling circuit of a research reactor, HANARO is investigated. The neutrons around the primary cooling pipe during normal operation of HANARO are measured with BF3 detector, and their count rate is 900 cps. They are regarded as photoneutrons due to the high energy gamma-rays from N-16 and delayed neutrons from the fission of the uranium contaminated on the fuel surface. The contribution of each neutron source is analyzed by measuring the changes of the neutron counts before and after the abrupt shutdown of reactor. In order to estimate the sensitivity of the fuel failure detection, the neutron count rate of BF3 detector is predicted by Monte Carlo calculation. The generation, transportation and detection of the photoneutrons and the delayed neutrons are simulated for the geometry similar to the experiments. From the calculations and experiments, it is ascertained that the photoneutron contribution to the total count rate is about 20–30%, and that the delayed neutron count rate is expected to about 720 cps. The fission rate in the flow tube of the reactor core by the surface contamination is obtained from the deduced delayed neutron count rate, and it is estimated to 1.66 × 105 fissions/cm3 s. From the MCNP calculation, it is confirmed that this fission rate can originate from the contaminated uranium of 120 μg, which is about 13% of the maximum allowable surface contamination on the fuel surface. The sensitivity of U-235 mass detection by the delayed neutron measurement can be concluded to about 0.2 μg-U235/cps. Thus, it is confirmed that the delayed neutron detection is sensitive enough to monitor the fuel failure, and that the neutron count rate is high enough for stable signal with short counting time.  相似文献   

10.
The main problem in nuclear energy is providing of safety at all stages of lifetime of nuclear installations in conditions of normal operation, accidents and at shutdown. Ignalina NPP, located in Lithuania, is one of the latest with RBMK reactors at highest capacity. Ignalina NPP has two units, both are closed for decommissioning now (in 2004 and 2009). Both units are equipped with RBMK-1500 reactors, the thermal power output is 4200 MW, the electrical power capacity is 1500 MW for each. In RBMK-1500 reactor the fuel assemblies remain for long time inside reactor core after the final shutdown. The paper discusses possibility of heat removal from the RBMK-1500 core at shutdown condition by natural circulation of water (1) and air (2) inside the fuel channels. In first case the decay heat from fuel assemblies is removed due to natural circulation of water and the piping above reactor core should be cooled by means of ventilation in the drum separator compartments. To warrant free access of air in to fuel channels (in the second case) the reactor cooling system should be completely dry out and the pressure headers and the steam discharge valves in steam lines should be opened. If mentioned conditions will be fulfilled, the reactor core will be cooled by natural circulation of water or air and fuel rods remain intact.  相似文献   

11.
Large fission gas bubbles were observed during metallographic examination of an irradiated U3Si2 dispersion fuel plate (U0R040) in the Advanced Test Reactor (ATR). The fuel temperature of this plate was higher than for most of the previous silicide-fuel tests where much smaller bubble growth was observed. The apparent conditions for the large bubble growth are high fission density (6.1 × 1021 f/cm3) and high fuel temperature (life-average 160 °C). After analysis of PIE results of U0R040 and previous ANL test plates, a modification to the existing athermal bubble growth model appears to be necessary for high temperature application (above 130 °C). A detailed analysis was performed using a model for the irradiation-induced viscosity of binary alloys to explain the effect of the increased fuel temperature. Threshold curves are proposed in terms of fuel temperature and fission density above which formation and interconnection of bubbles larger than 5 μ are possible.  相似文献   

12.
Optimization of fissile and fusile production in the SOLASE-H laser-fusion fissile-enrichment fuel-factory blanket is carried out. The objective is maximizing fissile breeding with the constraints of maintaining self-sufficiency in tritium production, and realistically accounting in the modeling for structural and coolant compositions and configurations imposed by the thermal-hydraulic and mechanical designs. The effect of radial and axial blanket zone thicknesses on fusile and fissile breeding is studied using a procedure which modifies the zones' effective optical thicknesses, rather than the actual three-dimensional geometrical configurations. A tritium yield per source neutron of 1.08 and a Th (n, ) reaction yield per source neutron of 0.43 can be obtained in such a concept, where ThO2 Zircaloy-clad fuel assemblies for light water reactors (LWRs) are enriched in the233U isotope by irradiating them in a lead flux trap. This corresponds to 0.77 kg/[MW(th)-year] of fissile fuel production, and 1.94 years of irradiation in the fusion reactor to attain an average 3 w/o fissile enrichment in the fuel assemblies. For a once-through LWR cycle, a support ratio of 2–3 is estimated. However, with fuel recycling, more attractive support ratios of 4–6 may be attainable for a conversion ratio of 0.55, and of 5–8 for a conversion ratio of 0.70. These estimates are lower than those reported, around 20, for related designs.  相似文献   

13.
Calculations of the fuel burnup and radionuclide inventory in the Syrian miniature neutron source reactor (MNSR) after 10 years (the reactor core expected life) of the reactor operation time are presented in this paper using the GETERA code. The code is used to calculate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burntup and plutonium produced in the reactor core, the concentrations and radionuclides of the most important fission products and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core were calculated using the GETERA code as well. It is found that the GETERA code is better than the WIMSD4 code for the fuel burnup calculation in the MNSR reactor since it is newer, has a bigger library of isotopes, and is more accurate.  相似文献   

14.
A performance analysis for a 450 MWth deep burn-high temperature reactor (DB-HTR) fuel was performed using COPA, a fuel performance analysis code of Korea Atomic Energy Research Institute (KAERI). The code computes gas pressure buildup in the void volume of a tri-isotropic coated fuel particle (TRISO), temperature distribution in a DB-HTR fuel, thermo-mechanical stress in a coated fuel particle (CFP), failure fractions of a batch of CFPs, and fission product (FP) releases into the coolant. The 350 μm DB-HTR kernel is composed of 30% UO2 + 70% (5% NpO2 + 95% PuO1.8) mixed with 0.6 moles of silicon carbide (SiC) per mole of heavy metal. The DB-HTR is operated at the constant temperature and power of 858 °C and 39.02 mW per CFP for 1395 effective full power days (EFPD) and is subjected to a core heat-up event for 250 h during which the maximum coolant temperature reaches 1548.70 °C. Within the normal operating temperature, the fuel showed good thermal and mechanical integrity. At elevated temperatures of the accident event, the failure fraction of CFPs resulted from the mechanical failure (MF) and the thermal decomposition (TD) of the SiC barrier is 3.30 × 10−3.  相似文献   

15.
The capabilities of the RELAP5-3D code to perform subchannel analyses in sodium-cooled fuel assemblies were evaluated. The motivation was the desire to analyze fuel assemblies with traditional (solid pins) as well as non-traditional (e.g., annular pins with internal cooling, bottle-shape) geometries. Since no current subchannel codes can handle such fuel assembly designs, a new flexible RELAP5-based subchannel model was developed. It was shown that subchannel analysis of sodium-cooled fuel assemblies is indeed possible through the use of control variables in RELAP5. The subchannel model performance was then verified and validated in code-to-code and code-to-experiment analyses, respectively. First, the model was compared to the SUPERENERGY II code for solid fuel pins in a conventional hexagonal lattice. It was shown that the temperature predictions from the two codes agreed within 2% (<3.5 °C). Second, the model was applied to the Oak Ridge 19-pin test, and it was found that the measured outlet temperature distribution could be predicted with a maximum error of 8% (<7 °C). Furthermore, the use of semicircular ribs on the duct wall to flatten the temperature distribution in a traditional hexagonal assembly was explored by means of the newly developed RELAP5-3D subchannel model; the results are reported here as an example of the model capabilities.  相似文献   

16.
Feasibility studies for recycling the recovered uranium from electro-refining process of pyroprocessing into a Canada Deuterium Uranium (CANDU) reactor have been carried out with a source term analysis code ORIGEN-S, a reactor lattice analysis code WIMS-AECL, and a Monte Carlo analysis code MCNPX. The uranium metal can be recovered in a solid cathode during an electro-refining process and has a form of a dendrite phase with about 99.99% expecting recovery purity. Considering some impurities of transuranic (TRU) elements and fission products in the recovered uranium, sensitivity calculations were also performed for the compositions of impurities. For a typical spent PWR fuel of 3.0 wt.% of uranium enrichment, 30 GWD/tU burnup and 10 years cooling, the recovered uranium exhibited an extended burnup up to 14 GWD/tU. And among the several safety parameters, the void reactivity at the equilibrium state was estimated 15 mk. Additionally, a simple sphere model was constructed to analyze surface dose rates with the Monte Carlo calculations. It was found that the recovered uranium from the spent PWR fuel by electro-refining process has a significant radioactivity depending on the impurities such as fission products.  相似文献   

17.
For the analysis of reactors with complex fuel assemblies or fine mesh applications as pin by pin neutron flux reconstruction, the usual approximation of the neutron transport equation by the multigroup diffusion equation does not provide good results. A classical approach to solve the neutron transport equation is to apply the spherical harmonics method obtaining a finite approximation known as the PL equations. In this line, a nodal collocation method for the discretization of these equations on a rectangular mesh is used in this paper to analyse reactors with MOX fuel assemblies. Although the 3D PL nodal collocation method becomes feasible due to the improvements in computer hardware, a complete treatment of the detailed structure of the fuel assemblies in actual three-dimensional geometry is still prohibitive, thus, an assembly homogenization method is necessary. A homogenization method compatible with our multidimensional PL code is proposed and tested performing heterogeneous and homogenized calculations. In this work, we apply the method to 2D complex fuel assembly configurations.  相似文献   

18.
This study deals with the design and development of calculational techniques and evaluation of key neutronic parameters of a typical PWR core having a total reactor power of 2652 MWt (890 MWe). The PWR core consists of 157 fuel assemblies containing a total of ∼72 tons of uranium arranged vertically in a concentric square array within the core shroud. Each fuel assembly contains 264 UO2 fuel pins with various enrichments (2.1, 2.6 and 3.1%), 24 control rods of Gd2O3 and one central water channel and all are arranged in a 17 × 17 array of matrix. Different computer codes including WIMS, TWOTRAN, CITATION and MCNP have been employed to develop a versatile and accurate reactor physics model of the PWR core. The computational methods, tools and techniques, customization of cross section libraries, various models for cells and super cells, and a lot of associated utilities have been standardized and established/validated for the overall core analysis. The analyses were performed in 3 steps: firstly for fuel pincells, then for the fuel assemblies and finally for the whole core. The WIMS and MCNP calculated infinite multiplication factors for fuel pincells having 2.1% enriched 235U were found to be 1.23393 and 1.23654, for 2.6% enrichment 1.28635 and 1.28887, and finally for 3.1% enrichment 1.32481 and 1.32812, respectively. For fuel assembly, WIMS and MCNP calculated infinite multiplication factors having 2.1% enrichment were found to be 1.24853 and 1.25445, for 2.6% enrichment 1.30372 and 1.30992, and for 3.1% enrichment 1.34424 and 1.35041, respectively. The effective multiplication factor calculated by CITATION, TWOTRAN and MCNP for whole core were found to be 1.25580, 1.25909 and 1.26382, respectively. The peak thermal neutron flux in the core calculated by MCNP was found to be 5.0298 × 1014 neutrons/cm2 s and the average core power density was 17.1 kW/cm3. The calculated results from different codes were found to be very good agreement for different moderator conditions. The choice of computer codes like WIMSD, TWOTRAN, CITATION and MCNP which are being used in nuclear industry for many years were selected to identify and develop new capabilities needed to support PWR analysis. The ultimate goal of the validation of the computer codes for PWR applications is to acquire and reinforce the capability of these general purpose computer codes to perform the core design and optimization study.  相似文献   

19.
The effects of evaluated nuclear data files on neutronics characteristics of a fusion–fission hybrid reactor have been analyzed; three-dimensional calculations have been made using the MCNP4C Monte Carlo Code for ENDF/B-VII T = 300 K, JEFF-3.0 T = 300 K, and CENDL-2 T = 300 K evaluated nuclear data files. The nuclear parameters of a fusion–fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, fissile fuel breeding and nuclear heating in a first wall, blanket and shield have been investigated for the mixture components of 90% Flibe (Li2BeF4) and 10% UF4 for a blanket layer thickness of 50 cm. The contributions of each isotope of Flibe (6Li, 7Li, 19F, 9Be) and UF4 (235U, 238U) to the integrated parameter values were calculated. The neutron wall load is assumed to be 10 MW/m2.  相似文献   

20.
Specific activities (concentrations) of fission products (FP) and activation products in spent fuel elements of the RBMK-1500 reactor were calculated using SCALE 5 computer code. Different burnup (5.1–21.0 MWd/kg) fuel assemblies were experimentally investigated. Activities of radionuclides present in the coolant water of storage cases of defective fuel elements were experimentally measured and analyzed. Experimental results provide a basis for a quantitative analysis of radionuclide release from spent fuel of the RBMK-1500 reactor. Relative release rates of radionuclides from the fuel matrix were assessed based on a comparison of experimental results with theoretical calculations. On the basis of analysis results released fission and activation products can be divided into several groups according to their release rates from fuel; this can be generalized for radionuclides with similar chemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号