首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 10.3 h half life radionuclide 165Er, decaying by electron capture to stable 165Ho, is an excellent candidate for Auger-electron therapy. In the frame of a systematic study of charged particle production routes of 165Er, the excitation function of the 165Ho(p,n)165Er reaction was measured up to 35 MeV by using a stacked foil irradiation technique and X-ray spectroscopy. The measured excitation function shows a significant energy shift when compared to the only experimental dataset measured earlier and an acceptable agreement with the results of different nuclear reaction model codes. The thick target yields calculated from the excitation function at typical energies available at small cyclotrons (Ep = 11 MeV and Ep = 15 MeV) are 41 MBq/μAh = 11 GBq/C and 75 MBq/μAh = 21 GBq/C, respectively.  相似文献   

2.
The radioisotope 165Er (T1/2 = 10.36 h) is a candidate for Auger-electron therapy. The β-emitting 166gHo (T1/2 = 26.83 h) is now being explored for various therapeutic applications. In the frame of our systematic study of charged particle production routes of therapeutic radionuclides the excitation functions of the 165Ho(d, 2n)165Er and 165Ho(d, p)166gHo reactions were measured up to 20 MeV by using a stacked foil irradiation technique and X/γ-ray spectroscopy. The excitation function of the 165Ho(d, 2n)165Er reaction was measured for the first time while for the 165Ho(d, p)166gHo reaction only a single dataset of earlier measured cross-sections was found. The measured excitation functions were compared to the results of different nuclear reaction model codes. The calculated thick target yield of the 165Ho(d, 2n) reaction is significantly higher over the optimal energy range than that for the 165Ho(p, n) reaction investigated earlier by us. The integral yield of the 165Ho(d, p)166gHo reaction is rather low compared to the established 165Ho(n, γ)166Ho reaction in a nuclear reactor.  相似文献   

3.
The energy spectra and double differential cross sections of neutron, proton, deuteron, triton, helium and alpha-particle emissions for n + 63,65,nat.Cu reactions are calculated and analyzed at incident neutron energies below 200 MeV. The optical model, the intra-nuclear cascade model, direct reaction theories, the unified Hauser–Feshbach and exciton model which includes the improved Iwamoto–Harada model are used. Theoretically calculated results are compared with the existing experimental data.  相似文献   

4.
An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He+, Ne+, Ar+, Kr+ and Xe+). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ∼0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n)4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.  相似文献   

5.
The crystal blocking technique has been used to measure the total time of the induced fission process for the 235U + α reaction in the energy range of bombarding α-particles from 25.9 to 31.2 MeV. Experimental fission times observed in this reaction vary from 10−17 to 10−16 s, depending on the projectile energy. Together with the corresponding experimental data on angular anisotropy in the same reaction they were analyzed within the dynamic-statistical approach with allowance for the nuclear dissipation phenomenon and the double-humped fission barrier model. It was demonstrated that the time of induced fission at low excitation energies is sensitive to the nuclear dissipation magnitude.  相似文献   

6.
The 89Y(n,γ)90mY cross-section has been measured at three neutron energy points between 13.5 and 14.6 MeV using the activation technique and a coaxial HPGe γ-ray detector. The data for the 89Y(n,γ)90mY cross-sections are reported to be 0.39 ± 0.02, 0.43 ± 0.02, and 0.38 ± 0.02 mb at 13.5 ± 0.2, 14.1 ± 0.1, and 14.6 ± 0.2 MeV incident neutron energies, respectively. The first data for the 89Y(n,γ)90mY reaction at neutron energy points of 13.5 and 14.1 MeV are presented. The natural high-purity Y2O3 powder was used as target material. The fast neutrons were produced by the T(d,n)4He reaction. Neutron energies were determined by the method of making cross-section ratios of 90Zr(n,2n)89m+gZr and 93Nb(n,2n)92mNb reactions, and the neutron fluencies were determined using the monitor reaction 93Nb(n,2n)92mNb. The results obtained are compared with existing data.  相似文献   

7.
Studies on the characteristics of 2010 keV resonance in 24Mg(p,p′γ)24Mg nuclear reaction for depth profiling Mg in thin films are reported. The resonance reaction, based on the detection of characteristic 1368 keV γ-rays, enables interference free measurement of Mg down to 2 × 1020 atoms/cm3 and has a probing depth of about 20 μm. The width of the resonance extracted from excitation curves for thick (>180 nm) thermally grown elemental Mg films, by SPACES is about 350 ± 50 eV. The reaction has been used to depth profile Mg in a Mg/Ti/Mg/Si film which provides interesting information on interfacial mixing involving Ti layer and the underlying Mg layer.  相似文献   

8.
The thermal neutron cross-section and the resonance integral of the 165Ho(n,γ)166gHo reaction have been measured by the activation method using a 197Au(n,γ)198Au monitor reaction as a single comparator. The high-purity natural Ho and Au foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the activated foils were measured with a calibrated p-type high-purity Ge detector. The correction factors for the γ-ray attenuation (Fg), the thermal neutron self-shielding (Gth), the resonance neutron self-shielding (Gepi) effects, and the epithermal neutron spectrum shape factor (α) were taken into account. The thermal neutron cross-section for the 165Ho(n,γ)166gHo reaction has been determined to be 59.7 ± 2.5 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n,γ)198Au reaction. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral for the 165Ho(n,γ)166gHo reaction is 671 ± 47 barn, which is determined relative to the reference value of 1550 ± 28 barn for the 197Au(n,γ)198Au reaction. The present results are, in general, good agreement with most of the previously reported data within uncertainty limits.  相似文献   

9.
The neutron capture cross-section for the 71Ga(n,  γ)72Ga reaction at 0.0536 eV energy was measured using activation technique based on TRIGA Mark-II research reactor. The 197Au(n, γ)198Au monitor reaction was used to determine the effective neutron flux. Neutron absorption and γ-ray attenuation in gallium oxide pellet were corrected in determination of cross-section. The cross-section for the above reaction at 0.0536 eV amounts to 2.75 ± 0.14 b. As far as we know there are no experimental data available at our investigated energy. So far we are the first, who carried out experiment with 0.0536 eV neutrons for cross-section measurement. The present result is larger than that of JENDL-3.3, but consistent within the uncertainty range. The value of ENDF/B-VII is higher than this work. The result of this work will be useful to observe energy dependence of neutron capture cross-sections.  相似文献   

10.
This study implies that 55Mn(n,γ)55Mn monitor reaction may be a convenient alternative comparator for the activation method and thus, it was used for the determination of thermal neutron cross section (TNX) and the resonance integral (RI) of the reaction 152Sm(n,γ)153Sm. The samples of MnO2 and Sm2O3 diluted with Al2O3 powder were irradiated within and without a cylindrical 1 mm-Cd shield case in an isotropic neutron field obtained from the 241Am–Be neutron sources. The γ-ray spectra from the irradiated samples were measured by high resolution γ-ray spectrometry with a calibrated n-type Ge detector. The correction factors for γ-ray attenuation, thermal neutron and resonance neutron self-shielding effects and epithermal neutron spectrum shape factor (α) were taken into account in the determinations. The thermal neutron cross section for 152Sm(n,γ)153Sm reaction has been determined to be 204.8 ± 7.9 b at 0.025 eV. This result has been obtained relative to the reference thermal neutron cross section value of 13.3 ± 0.1 b for the 55Mn(n,γ)56Mn reaction. For the TNX, most of the experimental data and evaluated one in JEFF-3.1, ENDF/B-VI, JENDL 3.3 and BROND 2.0, in general, agree well with the present result. The RI value for 152Sm(n,γ)153Sm reaction has also been determined to be 3038 ± 214 b, relative to the reference value of 14.0 ± 0.3 b for the 55Mn(n,γ)56Mn monitor reaction, using a 1/E1+α epithermal neutron spectrum and assuming Cd cut-off energy of 0.55 eV. In surveying literature, the existing experimental and evaluated data for the RI values are distributed from 1715 to 3462 b. However, when the Cd cut-off energy is defined as 0.55 eV, the present RI value agrees with some previously reported RI values, 3020 ± 163 b by Simonits et al., 3141 ± 157 by Van Der Linden et al., and 2962 ± 54 b by Kafala et al., within the limits of error.  相似文献   

11.
N profiles of several GaAs1−xNx epitaxial layers with different N mole fractions in the range 0 < x < 0.14 were obtained by using (1) heavy-ion elastic recoil detection analysis (HI-ERDA) along with Rutherford backscattering spectrometry (RBS) using a 35 MeV Si6+ beam, and (2) nuclear reaction analysis (NRA) with the 14N(α, p)17O reaction, also with RBS, using a 3.7 MeV 4He+ beam. The results from the two techniques are compared and the advantages, disadvantages and capabilities are discussed.  相似文献   

12.
Differential cross-section measurements of the 6Li(d,α0)4He reaction have been performed for deuteron energy between 900 and 2000 keV in steps of 25 keV. The reaction α particles were detected at four backward angles from 140° to 170° in steps of 10°. A qualitative discussion of the observed variations in the reaction cross sections through the influence of resonances in the d + 6Li compound system is presented. The results are also compared to existing data, when present, and are validated through benchmarking experiments using high-purity, thick, mirror-polished natural LiF and LiAlO2 targets.  相似文献   

13.
The excitation function for (n, p) reactions from reaction threshold to 20 MeV on five nickel isotopes viz; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni were calculated using Talys-1.0 nuclear model code involving the fixed set of global parameters. A good agreement between the calculated and measured data is obtained with minimum effort on parameter fitting and only one free parameter called ‘Shell damping factor’. This is of importance to the validation of nuclear model approaches with increased predictive power. The systematic decrease in (n, p) cross-sections with increasing neutron number in reactions induced by neutrons on isotopes of nickel is explained in terms of the proton separation energy and the pre-equilibrium model. The compound nucleus and pre-equilibrium reaction mechanism as well as the isotopic effects were also studied.  相似文献   

14.
15.
The thermal-neutron cross-sections and the resonance integrals for the 179Hf(n,γ)180mHf and the 180Hf(n,γ)181Hf reactions have been measured by the activation method. The high purity Hf and Au metallic foils within and without a Cd shield case were irradiated in a neutron field of the Pohang neutron facility. The gamma-ray spectra from the activated foils were measured with a calibrated p-type high-purity Ge detector.In the experimental procedure, the thermal neutron cross-sections, σ0, and resonance integrals, I0, for the 179Hf(n,γ)180mHf and the 180Hf(n,γ)181Hf reactions have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σ0 = 98.65 ± 0.09 barn and I0 = 1550 ± 28 barn. In order to improve the accuracy of the experimental results, the interfering reactions and necessary correction factors were taken into account in the determinations. The obtained thermal neutron cross-sections and resonance integrals were σ0 = 0.424 ± 0.018 barn and I0 = 6.35 ± 0.45 barn for the 179Hf(n,γ)180mHf reaction, and σ0 = 12.87 ± 0.52 barn and I0 = 32.91 ± 2.38 barn for the 180Hf(n,γ)181Hf reaction. The present results are in good agreement with recent measurements.  相似文献   

16.
Nuclear constants for use in reactor activation analysis especially (n, γ) cross-sections and absolute gamma intensities, are known to show a rather large scatter in literature. Thermal and resonance cross-sections for the 75As (n, γ)76As reaction is determined by the method of foil activation using 55Mn (n, γ)56Mn as a reference reaction. The experimental sample with and without a cadmium cover of 1-mm wall thickness was irradiated in the isotropic neutron field of the outer irradiation sites 7 of Ghana Research Reactor-1 facility which is a miniature neutron source reactor designed by the Chinese. The irradiation channel used has a neutron spectral parameter (α) found to be (0.037 ± 0.001). The induced activity in the sample was measured by gamma ray spectrometry with a high purity germanium detector. A standard solution of Arsenic was used for the analysis. The necessary correction for gamma attenuation, thermal neutrons and resonance neutron self-shielding effects were not taken into account during the experimental analysis because they were negligible. By defining cadmium cut-off energy of 0.55 eV, the result for 75As (n, γ)76As reaction was found to be: thermal neutron cross-section σ0 = (4.28 ± 0.19) b and resonance integral I0 = (61.88 ± 1.07) b.  相似文献   

17.
Cross-sections for (n, 2n), (n, p), and (n, α) reactions have been measured on silver isotopes at the neutron energies from 13.5 to 14.8 MeV using the activation technique in combination with high-resolution γ-ray spectroscopy. Corrections were made for the literature cross-sections of 109Ag(n, 2n) 108mAg reaction with incorrect half-life of product 108mAg. Neutrons were produced via the 3H(d, n)4He reaction using solid TiT. The neutron fluences were determined using the monitor reaction 27Al(n, α)24Na. The neutron energy in this measurement was determined by cross-section ratios for the 90Zr(n, 2n) 89m+gZr and 93Nb(n, 2n)92mNb reactions. Data are reported for the following reactions: 109Ag(n, 2n)108mAg, 107Ag(n, 2n)106mAg, 109Ag(n, p)109m+gPd, and 109Ag(n, α)106mRh. The cross-sections were discussed and compared with experimental data found in the literature, and with the comprehensive evaluation data in ENDF/B-VII, JENDL-3.3, and JEFF-3.1/A libraries.  相似文献   

18.
Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 1014 to 9 × 1016 cm−2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p0)17O, 16O(d,p1)17O and 12C(d,p0)13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 1016 cm−2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.  相似文献   

19.
The kinetics of CRUD oxidation by H2O2 has been studied using aqueous suspensions of metal oxide powder. Fe3O4, Fe2CoO4 and Fe2NiO4 were used as model compounds for CRUD. In addition, the activation energies for the reaction between H2O2 and the three CRUD models were determined. The rate constants at room temperature were determined to 6.6 (±0.4) × 10−9, 3.4 (±0.4) × 10−8 and 1.6 × 10−10 m min−1 for Fe3O4, Fe2CoO4 and Fe2NiO4, respectively. The corresponding activation energies are 52 ± 4, 44 ± 5 and 57 ± 7 kJ mol−1, respectively. The mechanism of the reaction is briefly discussed indicating that the final solid product in all three cases is Fe2O3. In addition to the experimental studies, the theoretical grounds for kinetics of reactions in particle suspensions are discussed. The theoretical discussion is also used to explain the somewhat unexpected trends in reactivity observed experimentally.  相似文献   

20.
We measured the thermal neutron cross-section and the resonance integral of the reaction 186W(n, γ)187W by the activation method using a 197Au(n, γ)198Au monitor reaction as single comparator. The high-purity natural W and Au metallic foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the samples were measured by high-resolution γ-ray spectrometry with a calibrated p-type high-purity Ge detector. The necessary correction factors for γ-ray attenuation (Fg), thermal neutron self-shielding (Gth), and resonance neutron self-shielding (Gepi) effects, and the epithermal neutron spectrum shape factor (α) were taken into account. The thermal neutron cross-section for the 186W(n, γ)187W reaction has been determined to be 37.2 ± 2.1 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n, γ)198Au reaction. The present result is, in general, in good agreement with most of the experimental data and the recently evaluated value of ENDF/B-VII.0 by 5.7%. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral obtained is 461 ± 39 barn, which is determined relative to the reference values of 1550 ± 28 barn for the 197Au(n, γ)198Au reaction. The present resonance integral value is in general good agreement with the recently measured values by 9%. The present result is lower than the evaluated ones by 10-13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号