首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of graphene oxide (GO) flake size on thermal properties of GO/poly(methyl methacrylate) (GO/PMMA) composites prepared via in situ polymerization was investigated. Two styles of GO sheets were synthesized from different sizes of graphite powders by modified Hummers' method and GO/PMMA composites with GO of different sizes were prepared via in situ polymerization. Transmission electron microscopy verified that GO sheets produced from large graphite powders was obviously larger than that from small graphite powders. The similar number of layers and disorder degree of two types of GO sheets were proved by X‐ray diffraction and Raman, respectively. X‐ray diffraction and scanning electron microscopy results of GO/composites proved the homogenous dispersion of both two types of GO sheets in polymer matrix. Dynamic mechanical analysis and thermogravimetric analysis results showed that large GO sheets exhibit better improvement than small GO sheets in thermal properties of the composites. Compared with neat PMMA, the glass transition temperature and decomposition temperature of the composites with large GO sheets (0.20 wt %) were increased by 15.9 and 25.9 °C, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46290.  相似文献   

2.
The preparation of graft copolymers of poly(methyl methacrylate) with some alkyl methacrylates were carried out via atom transfer radical polymerization method catalyzed by CuCl/2,2′-bipyridine and using a macroinitiator, poly[(methyl methacrylate)-co-(3,5-bis(chloroacetoxy)phenyl methacrylate)], including an amount of 1 mol % having α-halogeno carbonyl group in the side groups. Although the number-average molecular weights of a graft copolymer series of n-butyl methacrylate (n-ButMA) ended at different times increased from 55,700 to 99,500, the polydispersities decreased from 1.85 to 1.39 with time. The thermal degradation kinetics of macroinitiator and a two-armed graft copolymer of n-ButMA with this macroinitiator, PMMA-g-PnButMA: 4% (by mol), were carried out at different heating rates by thermogravimetric analysis and the results were compared. Using both the Flynn–Wall–Ozawa and Kissinger methods, the decomposition activation energies for macroinitiator were determined as 168 and 162 kJ/mol, respectively; they were also calculated as 233 and 239 kJ/mol for PMMA-g-PnButMA: 4%. The solid state thermodegradation mechanisms of both macroinitiator and PMMA-g-PnButMA: 4% are R1-type mechanism, a phase boundary-controlled reaction, and F1-type mechanism, a random nucleation with one nucleus on the individual particle, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Poly(methyl methacrylate)/montmorillonite (MMT) nanocomposites were prepared by in situ bulk polymerization. The results showed that the silicone coupling agent affected the structure and properties of hybrid materials. XRD analysis showed that the dispersion of clay in nanocomposites with silicone‐modified organophilic MMT was more ordered than that in nanocomposites with unmodified organophilic MMT. The glass transition temperature (Tg) of the nanocomposites was 6–15°C higher and the thermal decomposition temperature (Td) was 100–120°C higher than those of pure PMMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2256–2260, 2003  相似文献   

4.
Commercial Poly(methyl methacrylate) (PMMA) containing Tinuvin 622, a Hindered Amine Stabilizer (HAS), in 0.3% (wt/wt) concentration was investigated. The samples were irradiated with gamma radiation (60Co) at room temperature in air. The viscosity‐average molecular weight (Mv) was analyzed by viscosity technique. Both control PMMA (without HAS) and PMMA + 622 (with HAS) showed a decrease in molecular weight with the increase in dose, reflecting the random scissions that occurred in the main chain. The G value (scissions/100 eV of energy transferred to the system) was also obtained by viscosity analysis. G value results showed that the addition of Tinuvin 622 into the PMMA matrix significantly decreased the number of scissions/100 eV at dose range of 0–60 kGy. Analysis of infrared spectra showed a decrease in the carbonyl index (CI) in irradiated samples. However the CI decrease was found lower for PMMA + 622 than for control PMMA sample. Thermogravimetric analysis (TGA) revealed that maximum decomposition temperature of additive PMMA is 42°C higher than control PMMA for unirradiated system. On the other hand this difference is not significant in irradiated systems at 60‐kGy irradiation dose. The activation energy of the thermal degradation of PMMA was 165 kJ/mol, this activation energy increased 60 kJ/mol when Tinuvin 622 was added to PMMA matrix. Therefore Tinuvin 622 is a suitable radiostabilizing agent for commercial PMMA in a 0–60 kGy dose interval. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Constrained shrinkage of fibers is the primary method used to examine orientation in amorphous materials. During the test, fibers are constrained, heated, and the stress that develops is measured as a function of time and temperature. This article describes an apparatus developed to measure that stress and a series of experiments for melt‐spun poly(methyl methacrylate) fibers fabricated under three conditions: (1) constant viscosity, (2) increasing temperature, and (3) increasing draw velocity. Results show that both the rates of rise and the decay of the fiber shrinkage stress have an Arrhenius relationship with temperature. Fibers fabricated at a constant viscosity have the same maximum shrinkage stress and rate of stress decay. As the processing temperature decreases or as draw velocity increases, for other parameters held constant, the maximum shrinkage stress increases. The rate of stress rise increases with decreasing processing temperature or increasing draw velocity. Maximum shrinkage stress also increases with increasing molecular orientation when measured by a different test, free heat‐induced shrinkage of the fibers. However, it was not possible to correlate both of these results to rubber elasticity theory attributed to the high degree of orientation present in the fibers and high polydispersity in the starting material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4047–4056, 2004  相似文献   

6.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005  相似文献   

7.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The use of methyl methacrylate/poly(methyl methacrylate) as a medium for the exfoliation of graphite platelets without any chemical treatment is reported. The dispersions, characterized by transmission electron microscopy and Raman spectroscopy, confirmed the obtainment of graphene sheets a few layers thick. We found that the electrical conductivity of such nanocomposites can be activated at temperature by the application of an external electric field, this effect being reversible after removal of the thermal stimulus. This result provides an initial understanding of how electric field assisted thermal annealing can be used to control the bulk physical properties of such composites. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
A series of poly(methyl methacrylate) (PMMA)/octavinyl polyhedral oligomeric silsesquioxane (POSS) blends were prepared by the solution‐blending method and characterized with Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. The glass‐transition temperature (Tg) of the PMMA–POSS blends showed a tendency of first increasing and then decreasing with an increase in the POSS content. The maximum Tg reached 137.2°C when 0.84 mol % POSS was blended into the hybrid system, which was 28.2°C higher than that of the mother PMMA. The X‐ray diffraction patterns, transmission electron microscopy micrographs, and Fourier transform infrared spectra were employed to investigate the structure–property relationship of these hybrid nanocomposites and the Tg enhancement mechanism. The results showed that at a relatively low POSS content, POSS as an inert diluent decreased the interaction between the dipolar carbonyl groups of the homopolymer molecular chains. However, a new stronger dipole–dipole interaction between the POSS and the carbonyl of PMMA species formed at the same time, and a hindrance effect of nanosize POSS on the motion of the PMMA molecular chain may have played the main role in the Tg increase of the hybrid nanocomposites. At relatively high POSS concentrations, the strong dipole–dipole interactions that formed between the POSS and carbonyl groups of the PMMA gradually decreased because of the strong aggregation of POSS. This may be the main reason for the resultant Tg decrease in these hybrid nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A series of polymer–clay nanocomposite (PCN) materials consisting of organic poly(methyl methacrylate) (PMMA) and inorganic montmorillonite (MMT) clay platelets were prepared successfully by the effective dispersion of nanolayers of the MMT clay in the PMMA framework through both in situ emulsion polymerization and solution dispersion. The as‐prepared PCN materials obtained with both approaches were subsequently characterized with wide‐angle powder X‐ray diffraction and transmission electron microscopy. For a comparison of the anticorrosion performance, a PCN material (e.g., 3 wt % clay loading) prepared by in situ emulsion polymerization, showing better dispersion of the clay platelets in the polymer matrix, exhibited better corrosion protection in the form of a coating on a cold‐rolled steel coupon than that prepared by solution dispersion, which showed a poor dispersion of the clay nanolayers according to a series of electrochemical corrosion measurements. Comparative studies of the optical clarity, molecular barrier properties, and thermal stability of samples prepared in both ways, as membranes and fine powders, were also performed with ultraviolet–visible transmission spectroscopy, molecular permeability analysis, thermogravimetric analysis, and differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1936–1946, 2004  相似文献   

11.
The influence of organic modifiers on intercalation extent, structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)–clay nanocomposites were studied. Two different organic modifiers with varying hydrophobicity (single tallow versus ditallow) were investigated. The nanocomposites were prepared from melt processing method and characterized using wide angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. Mechanical properties such as tensile modulus (E), break stress (σbrk), and % break strain (εbrk) were determined for nanocomposites at various clay loadings. Extent of PMMA intercalation is sufficient and in the range 9–15 Å depending on organoclay and filler loading. Overall thermal stability of nanocomposites increases by 16–30°C. The enhancement in Tg of nanocomposite is merely by 2–4°C. With increase in clay loading, tensile modulus increases linearly while % break strain decreases. Break stress is found to increase till 4 wt % and further decreases at higher clay loadings. The overall improvement in thermal and mechanical properties was higher for the organoclay containing organic modifier with lower hydrophobicity and single tallow amine chemical structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
采用热损失法研究了不同的工艺条件对聚甲基丙烯酸甲酯熟降解的影响和热降解动力学的研究,结果表明,聚甲基丙烯酸甲酯在氮气氛下热降解为1级反应.平均活化能为195.36 kJ/mol;在氧气氛下热降解分为2个阶段,反应前期为1.5级反应,反应中后期为1级反应.升温速率对2段式反应的温度划分有较大的影响.随着升温速率的提高,1.5级反应的温度区域增大.  相似文献   

13.
Methyl methacrylate was copolymerized with propyl N,N‐tetramethylbis(phosphonate)‐bis(methylene)aminemethyl methacrylate (MAC3NP2). The thermal degradation and flammability of this modified poly(methyl methacrylate) (PMMA) were compared with those of pure PMMA using thermogravimetric analysis (TGA) and pyrolysis combustion flow calorimetry (PCFC). The morphology of char was investigated using scanning electron microscopy and the yield of phosphorus using energy‐dispersive X‐ray analysis. The gases evolved during degradation in TGA were analysed using Fourier transform infrared spectroscopy. The total heat release and heat release capacity of the reactively modified PMMA are reduced, as compared to pure PMMA. The modified PMMA presents a better thermal stability (above 290 °C) than pure PMMA and leads to an important char formation. A comparison among TGA, PCFC and the amount of phosphorus in the condensed phase gives useful information about the role of phosphorus in the flame retardancy of the copolymer. The result reveals the effect of phosphorus not only in the condensed phase but also in the vapour phase. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Polymer/Silica nanocomposite latex particles were prepared by emulsion polymerization of methyl methacrylate (MMA) with dimethylaminoethyl methacrylate (DM). The reaction was performed using a nonionic surfactant and in the presence of silica nanoparticles as the seed. The polymer‐coated silica nanoparticles with polymer content and number average particle sizes ranged from 32 to 93 wt % and 114–310 nm, respectively, were obtained depending on reaction conditions. Influences of some synthetic conditions such as MMA, DM, surfactant concentration, and the nature of initiator on the coating of the silica nanoparticles were studied. Electrostatic attraction between anionic surface of silica beads and cationic amino groups of DM is the main driving force for the formation of the nanocomposites. It was demonstrated that the ratio of DM/MMA is important factor in stability of the system. The particle size, polymer content, efficiency of the coating reaction, and morphology of resulted nanocomposite particles showed a dependence on the amount of the surfactant. Zeta potential measurements confirmed that the DM was located at the surface of the nanocomposites particles. Thermogravimeteric analysis indicated a relationship between the composition of polymer shell and polymer content of the nanocomposites. The nanocomposites were also characterized by FTIR and differential scanning calorimetry techniques. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this study, nanocomposites of poly(lactic acid) (PLA) containing 0.5, 1, and 2.5 wt % oxidized multiwalled carbon nanotubes (MWCNT–COOHs) were prepared by the solved evaporation method. From transmission electron microscopy and scanning electron microscopy micrographs, we observed that the MWCNT–COOHs were well dispersed in the PLA matrix and, additionally, there was increased adhesion between PLA and the nanotubes. As a result, all of the studied nanocomposites exhibited higher mechanical properties than neat PLA; this indicated that the MWCNT–COOHs acted as efficient reinforcing agents, whereas in the nonoxidized multiwalled carbon nanotubes, the mechanical properties were reduced. Nanotubes can act as nucleating agents and, thereby, affect the thermal properties of PLA and, especially, the crystallization rate, which is faster than that of neat PLA. From the thermogravimetric data, we observed that the PLA/MWCNT–COOH nanocomposites presented relatively better thermostability than PLA; this was also verified from the calculation of activation energy. On the contrary, the addition of MWCNT–COOH had a negative effect on the enzymatic hydrolysis rate of PLA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Polymer/clay nanocomposites (PCNs) of poly(methyl methacrylate) and an organically modified clay, Cloisite 15a, were synthesized in situ with a suspension polymerization technique. The amount of clay present in the PCNs was varied to provide a better understanding of the effect of the clay on the properties of the polymer matrix. However, unexpectedly, we found that the concentration of clay had a dramatic impact on the molecular weight of the polymer matrix, and a relationship between the clay concentration and polymer molecular weight was determined. The PCNs were characterized with size exclusion chromatography (SEC), X‐ray diffraction, transmission electron microscopy, and oscillatory shear rheology. From oscillatory shear rheology, the full master curves for the PCNs were obtained by application of the time–temperature superposition principle. To enable the effect of the clay on the rheology to be quantified, the experimental data was compared to the time‐dependent diffusion model of des Cloizeaux for polydisperse polymer melts, which enabled the polydispersity to be incorporated through the use of the molecular weight distribution obtained via SEC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Poly[methyl(trifluoropropyl)siloxane] (PMTFPS), which is an essential polymer in oil-resistant rubber materials, exhibits unsatisfactory thermal stability. In this article, PMTFPSs with methyl and hydroxyl terminal groups are prepared, and their thermal stabilities are investigated via thermogravimetric analysis and pyrolysis-gas chromatography-mass spectrometry in an inert atmosphere. Additionally, the degradation mechanisms are discussed in terms of molecular structural characteristics (bond length and bond angle) and reaction driven forces (electrostatic potential and atom charge) based on quantum chemistry calculations. PMTFPS is found to degrade mainly into cyclic monomers through (a) the Si O rearrangement reaction in the middle of the chain and (b) the “back-biting” reaction from the end of the chain. PMTFPS with silanol terminal groups is more likely to degrade according to pathway (b), resulting in more cyclotrisiloxane. Furthermore, the silanol from nano-silica accelerates the degradation of PMTFPS, and the mechanism of this process is presented.  相似文献   

18.
Polymer blends composed of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) were prepared via radical-initiated polymerization of methyl methacrylate (MMA) in the presence of PVAc. Differential scanning calorimetry and dynamic mechanical analysis were employed to investigate the miscibility and phase behavior of the blends. The PMMA/PVAc blends of in situ polymerization were found to be phase separated and exhibited a two-phase structure, although some chain transferring reaction between the components occurred. The phase separation resulted from the solvent effect of MMA during the in situ polymerization, which was confirmed by the investigation of phase behavior based on solution cast blending. Solubility analysis of the polymerized blends indicated that some chain transferring reaction between the components occurred during the polymerization. An abrupt increase in gel content from 21.2 to 72.4 wt % was observed when the inclusion of PVAc increased from 30 to 40 wt %, and the gel component consisted of the component polymers as shown by infrared spectroscopy studies. The thermogravimetric analysis study indicated that the inclusion of a small amount of PVAc gives rise to a marked stabilization effect on the thermal stability. The PMMA/PVAc blends exhibited increased notched impact properties with the inclusion of 5 wt % PVAc. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 675–684, 1998  相似文献   

19.
The kinetic of the thermal degradation of poly(isobornyl methacrylate) (PIBORNMA) was investigated by thermo gravimetric (TG) analysis at different heating rates. TG curves showed that the thermal decomposition of PIBORNMA occurred in one stage. The apparent activation energies of thermal decomposition of PIBORNMA was determined by Tang, Flynn-Wall-Ozawa (FWO), Kissenger–Akahira–Sunose (KAS) and Coats-Redfern methods and the values were 80.30, 84.69, 79.81 and 84.413 kJ/mol, respectively. The mechanism function and pre-exponential factor was determined by master plots method.  相似文献   

20.
Poly(methyl methacrylate) (PMMA)/single‐walled carbon nanotube (SWNT) composites were synthesized by the grafting of PMMA onto the sidewalls of SWNTs via in situ radical polymerization. The free‐radical initiators were covalently attached to the SWNTs by a well‐known esterification method and confirmed by means of thermogravimetric analysis and Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy were used to image the PMMA–SWNT composites; these images showed the presence of polymer layers on the surfaces of debundled, individual nanotubes. The PMMA–SWNT composites exhibited better solubility in chloroform than the solution‐blended composite materials. On the other hand, compared to the neat PMMA, the PMMA–SWNT nanocomposites displayed a glass‐transition temperature up to 6.0°C higher and a maximum thermal decomposition temperature up to 56.6°C higher. The unique properties of the nanocomposites resulted from the strong interactions between the SWNTs and the PMMA chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号