首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A well‐defined graft copolymer, polystyrene‐graft‐poly(methyl methacrylate), was synthesized in two steps. In the first step, styrene and p‐vinyl benzene sulfonyl chloride were copolymerized via reversible addition–fragmentation chain transfer polymerization (RAFT) in benzene at 60 °C with 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as a chain transfer agent and 2,2′‐azobis(isobutyronitrile) as an initiator. In the second step, poly[styrene‐cop‐(vinyl benzene sulfonyl chloride)] was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in toluene at 80 °C with CuCl as a catalyst and 2,2′‐bipyridine as a ligand. With sulfonyl chloride groups as the initiating sites for the ATRP of MMA, high initiation efficiencies were obtained. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
Novel thermoresponsive poly(vinyl alcohol)‐graft‐poly(N,N‐diethylacrylamide) (PVA‐g‐PDEAAm) copolymers were prepared by microwave‐assisted graft copolymerization using a potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine (KPS/TEMED) initiator system. The structures of PVA‐g‐PDEAAm copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry/thermogravimetric analysis, gel permeation chromatography, X‐ray diffraction, and scanning electron microscopy. The effects of various process parameters on grafting were systematically studied: microwave power, KPS, monomer and PVA concentrations, and ultraviolet irradiation. Under optimal conditions, the maximum grafting percent and graft efficiency were 101% and 93%, respectively. Furthermore, a lower critical temperature of copolymers was measured in the range 29–31 °C by ultraviolet spectroscopy. The swelling behavior of graft membranes was carried out at various temperatures, and the results showed that the swelling behavior of membranes was dependent on the temperature. In vitro cell culture studies using L929 fibroblast cells confirmed cell compatibility with the PVA‐g‐PDEAAm copolymer and its membrane, making them an attractive candidate for drug delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45969.  相似文献   

3.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

4.
Homopolymer brushes of poly(N,N-dimethylacrylamide) (PDMA), poly(methoxyethylacrylamide) (PMEA) and poly(N-isopropylacrylamide)(PNIPAM) grown on atom transfer radical polymerization (ATRP) initiator functionalized latex particles were used as macroinitiators for the synthesis of PDMA-b-PNIPAM/PMEA, PMEA-b-PDMA/PNIPAM and PNIPAM-b-PDMA block copolymer brushes by surface initiated aqueous ATRP. The grafted homopolymer and block copolymer brushes were analyzed for molecular weight, molecular weight distribution, chain grafting density, composition and hydrodynamic thickness (HT) using gel permeation chromatography-multi-angle laser light scattering, 1H NMR, particle size analysis and atomic force microscopy (AFM) techniques. The measured graft molecular weight increased following the second ATRP reaction in all cases, indicating the second block had been added. Chain growth depended on the nature of the monomer used for block copolymerization and its concentration. Unimodal distribution of polymer chains in GPC with non-overlap of molar mass-elution volume curves implied an efficient block copolymerization. This was supported by the increase in HT measured by particle size analysis, equilibrium thickness observed by AFM and the composition of the block copolymer layer by 1H NMR analysis, both in situ and on cleaved chains in solution. 1H NMR analysis of the grafted latex and cleaved polymers from the surface demonstrated that accurate determination of the copolymer composition by this method is possible without detaching polymer chains from surface. Block copolymer brushes obey the same power law dependence of HT on molecular weight as homopolymer brushes in good solvent conditions. The NIPAM-containing block copolymer brushes were sensitive to changes in the environment as shown by a decrease in HT with increase in the temperature of the medium.  相似文献   

5.
Surface‐initiated atom transfer radical polymerization (ATRP) from poly(ethylene terephthalate) (PET) film was studied. Poly(methyl methacrylate) (PMMA), poly (acrylamide) (PAAM), and their diblock copolymer (PMMA/PAAM) on the surface of PET film were successfully prepared by surface‐initiated ATRP. The structures and properties of the modified PET film were characterized by FT‐IR/ATR, X‐ray photoelectron spectroscopy (XPS), measurements of contact angles, and scanning electronic microscopy (SEM). The results indicate that the surface properties of PET film were greatly improved by grafted polymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Poly(ethylene terephthalate) (PET) films were modified via the grafting of polyacrylamide (PAAM) onto the surface by surface‐initiated atom transfer radical polymerization and UV‐initiated grafting. The surface composition and morphology of the modified PET films were characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and scanning electron microscopy (SEM). The results show that the surface of the PET film was grafted by PAAM, with its own surface morphology different from that of PET. The properties of the modified PET films were studied by contact‐angle, peeling force, penetrability, haze, and friction factor measurements. The results indicate that the peeling force and friction factor of the modified PET films were higher than those of the unmodified PET film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Polyaniline‐graft‐Poly(N‐isopropylacrylamide) copolymers were synthesized by atom‐transfer radical polymerization (ATRP) of N‐isopropylacrylamide using polyaniline macro‐initiators. Polyaniline‐chloroacetylchloride and polyaniline‐chloropropionylchloride macroinitiators were obtained by the reaction of amine nitrogens of polyaniline with chloroacetyl chloride and 2‐choloropropionyl choloride, respectively. Both macroinitiators and graft copolymers were characterized by FT‐IR and 1H‐NMR spectroscopy. The cyclic voltammetry (CV) and UV‐Vis spectroscopy studies showed that these copolymers are electroactive. The solubility test revealed that the polyaniline‐graft‐poly (N‐isopropylacrylamide) copolymers are water soluble or water/methanol soluble. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) images showed the growing of poly (N‐isopropylacrylamide) chains on polyaniline backbone. Investigation of thermal behavior of graft copolymers by thermal gravimetry analysis (TGA) confirmed the results obtained from AFM and SEM images. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

9.
Poly(ethylene glycol)‐block‐poly(N‐isopropylacrylamide) (PEG‐b‐PNIPAM) block copolymers were synthesized by atom transfer radical polymerization, and the α‐cyclodextrin (α‐CD) induced self‐assembly characteristics of the system were elucidated. Below the lower critical solution temperature (LCST) of PNIPAM, CD threaded onto the PEG segments and induced micellization to form rod‐shaped nanostructures comprising of a PEG/α‐CD condensed phase and a PNIPAM shell. Increasing the temperature of system above the LCST caused the PNIPAM segments to collapse, which resulted in the dethreading of the CD. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Enzymatic polymerization in a non‐natural environment is of interest as an environmentally friendly methodology as an alternative to the use of conventional chemical organometallic catalysts. Chemo‐enzymatic synthesis of the AB‐type diblock copolymer poly(2,2,2‐trichloroethyl 10‐hydroxydecanate)‐block‐polystyrene (PHD‐b‐PSt) was carried out by combining enzymatic self‐condensation polymerization (eSCP) and atom‐transfer radical polymerization (ATRP). Biocatalyst Novozyme 435 was successful in catalyzing the eSCP of a novel ω‐hydroxyester, i.e. 2,2,2‐trichloroethyl 10‐hydroxydecanate. The resulting ? CCl3‐terminated PHD initiated the ATRP of styrene, a ‘living’/controlled radical polymerization. The analysis of the hydrolysate from the copolymer proved the presence of a block copolymer structure. In addition, the well‐defined diblock copolymer PHD‐b‐PSt self‐assembled into nanoscale micelles in aqueous solution. The chemo‐enzymatic synthesis of diblock copolymer PHD‐b‐PSt was achieved by the combination of eSCP and ATRP. The structures and composition of the block copolymer were characterized by means of NMR, infrared and gel permeation chromatography measurements. Differential scanning calorimetry analysis showed that a microphase‐separation structure was formed in the copolymer, which was caused by the crystallization of the PHD segments. As investigated with atomic force microscopy and dynamic light scattering, these micelles had a mean diameter and a spherical shape. To our knowledge, this is the first example of a chemo‐enzymatic synthesis based on eSCP and ATRP. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
BACKGROUND: The surface of a substrate which comprises a fibrous material is brought into contact with a type of amphiphilic block copolymer which comprises hydrophilic/hydrophobic polymeric blocks. These amphiphilic copolymers have been synthesized by atom transfer radical polymerization (ATRP) technique. The atom transfer radical polymerization of poly(2,3,4,5,6‐pentafluorostyrene)‐block‐poly(ethylene oxide) (PFS‐b‐PEO) copolymers (di‐ and triblock structures) with various ranges of PEO molecular weights was initiated by a PEO chloro‐telechelic macroinitiator. The polymerization, carried out in bulk and catalysed by copper(I) chloride in the presence of 2,2′‐bipyridine ligand, led to A–B–A amphiphilic triblock and A–B amphiphilic diblock structures. RESULTS: With most of the macroinitiators, the living nature of the polymerizations led to block copolymers with narrow molecular weight distributions (1.09 < Mw/Mn < 1.33) and well‐controlled molecular structures. These block copolymers turned out to be water‐soluble through adjustment of the PEO block content (>90 wt%). Of all the block copolymers synthesized, PFS‐b‐PEO(10k)‐b‐PFS containing 10 wt% PFS was found to retard water absorption considerably. CONCLUSION: The printability of paper treated with the copolymers was evaluated with contact angle measurements and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Polythiophene (PT) based dual responsive water‐soluble graft copolymer (PT‐g‐[poly(methoxyethoxy ethyl methacrylate)‐co‐poly(N,N‐diethylamino ethyl methacrylate)]) (PT‐g‐P(MeO2MA‐co‐DEAEMA)) (PTDE) has been synthesized by random copolymerization of methoxyethoxy ethyl methacrylate (MeO2MA) and N,N‐diethylamino ethyl methacrylate (DEAEMA) at 30 °C on the 2,5‐poly(3‐[1‐ethyl‐2‐(2‐ bromoisobutyrate)] thiophene) (PTI) macroinitiator using the Cu based atom transfer radical polymerization technique. The PTDE graft copolymer was characterized by gel permeation chromatography and 1H NMR techniques and it exhibits thermo‐reversible solubility in water showing a lower critical solution temperature of ca 42 °C in neutral aqueous solution. The PTDE graft copolymer contains a fluorescent PT backbone, and interestingly the system exhibits doubling of fluorescence intensity with rising temperature over the temperature range 41–45 °C at pH 7. The PTDE system therefore acts following the principle of the polymeric AND logic gate and it is also found to be effective in sensing of nitroaromatics, particularly picric acid. The influence of chain hydrophobicity on the logic operation and on the sensing of nitroaromatics is discussed. © 2014 Society of Chemical Industry  相似文献   

14.
Poly[methacryloxypropylheptacyclopentyl‐T8‐silsesquioxane (MAPOSS)‐co‐3‐methacryloxypropyltris(trimethylsiloxy)silane (SiMA)] was synthesized through free radical polymerization. The physical and carbon dioxide (CO2) sorption properties of the copolymer membranes were investigated in terms of the MAPOSS content. As the MAPOSS content increases, the membrane density increased, suggesting a decrease in the fractional free volume. In addition, the thermal stability was improved with increasing the MAPOSS content. These are because of the polyhedraloligomericilsesquioxane (POSS) units that restrict the high mobility of poly(SiMA) segments. The glass transition temperature, Tg of the copolymers was single Tg based on the differential scanning calorimetry, suggesting that the copolymers were random and not phase separation. Based on the CO2 sorption measurement, the POSS units play a role in reducing Henry's dissolution by suppressing the mobility of the poly(SiMA) component, while POSS units increase the nonequilibrium excess free volume, which contributes to the Langmuir dissolution. Based on these results, the introduction of MAPOSS unit is one of the effective ways to improved the thermal stability and CO2 sorption property due to the enhancement of the polymer rigidity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
A series of amphiphilic graft copolymers, PE‐graft‐PEO, containing hydrophobic polyethylene (PE) as the backbone and hydrophilic poly(ethylene oxide) (PEO) as the side‐chain, have been synthesized by a novel route. The graft structure and the molecular weight, as well as the molecular weight distribution of the graft copolymer can easily be controlled. The molecular weight of the side‐chain PEO is proportional to the reaction time and the monomer concentration, which indicates the ‘living’ character of the anionic polymerization of ethylene oxide. The produced copolymers PE‐graft‐PEO were characterized by 1H NMR and DSC measurements. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The synthesis of novel copolymers consisting of a side‐group liquid‐crystalline backbone and poly (methyl methacrylate) grafts were realized by the use of atom transfer radical polymerization (ATRP). In the first stage, the bromine‐functional copolymers 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate and (2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrole‐1‐yl)methyl 2‐bromopropanoate were synthesized by free‐radical polymerization. These copolymers were used as initiators in the ATRP of methyl methacrylate to yield graft copolymers. Both the macroinitiator and graft copolymers were characterized by 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. The ATRP graft copolymerization was supported by an increase in the molecular weight of the graft copolymers compared to that of the macroinitiator and also by their monomodal molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The graft polymerization of methyl methacrylate and butyl acrylate onto poly(vinyl chloride‐co‐vinyl acetate) with atom transfer radical polymerization (ATRP) was successfully carried out with copper(I) thiocyanate/N,N,N,N,N″‐pentamethyldiethylenetriamine and copper(I) chloride/2,2′‐bipyridine as catalysts in the solvent N,N‐dimethylformamide. For methyl methacrylate, a kinetic plot of ln([M]0/[M]) (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) versus time for the graft polymerization was almost linear, and the molecular weight of the graft copolymer increased with increasing conversion, this being typical for ATRP. The formation of the graft polymer was confirmed with gel permeation chromatography, 1H‐NMR, and Fourier transform infrared spectroscopy. The glass‐transition temperature of the copolymer increased with the concentration of methyl methacrylate. The graft copolymer was hydrolyzed, and its swelling capacity was measured. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 183–189, 2005  相似文献   

18.
Two monodisperse graft copolymers, poly(4‐methylstyrene)‐graft‐poly(tert‐butyl acrylate) [number‐average molecular weight (Mn) = 37,500, weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.12] and polystyrene‐graft‐poly(tert‐butyl acrylate) (Mn = 72,800, Mw/Mn = 1.12), were prepared by the atom transfer radical polymerization of tert‐butyl acrylate catalyzed with Cu(I) halides. As macroinitiators, poly{(4‐methylstyrene)‐co‐[(4‐bromomethyl)styrene]} and poly{styrene‐co‐[4‐(1‐(2‐bromopropionyloxy)ethyl)styrene]}, carrying 40% of the bromoalkyl functionalities along the chain, were used. The dependencies of molecular parameters on monomer conversion fulfilled the criteria for controlled polymerizations. In contrast, the dependencies of monomer conversion versus time were nonideal; possible causes were examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2930–2936, 2002  相似文献   

19.
Commercial brominated poly(isobutylene‐co‐isoprene) (BIIR) rubber has been directly used for the initiation of atom transfer radical polymerization (ATRP) by utilizing the allylic bromine atoms on the macromolecular chains of BIIR. The graft copolymerization of methyl methacrylate (MMA) from the backbone of BIIR which was used as a macroinitiator was carried out in xylene at 85 °C with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalytic complex. The polymerization conditions were optimized by adjusting the catalyst and monomer concentration to reach a higher monomer conversion and meanwhile suppress macroscopic gelation during the polymerization process. This copolymerization followed a first‐order kinetic behavior with respect to the monomer concentration, and the number‐average molecular weight of the grafted poly(methyl methacrylate) (PMMA) increased with reaction time. The resultant BIIR‐graft‐PMMA copolymers showed phase separation morphology as characterized by atomic force microscopy, and the presence of PMMA phase increased the polarity of the BIIR copolymers. This study demonstrated the feasibility of using commercial BIIR polymer directly as a macromolecular initiator for ATRP reactions, which opens more possibilities for BIIR modifications for wider applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43408.  相似文献   

20.
The synthesis of triblock copolymer poly(octadecyl acrylate‐b‐styrene‐b‐octadecyl acrylate), using atom transfer radical polymerization (ATRP), is reported. The copolymers were prepared in two steps. First, polystyrene was synthesized by ATRP using α,α′‐dichloro‐p‐xylene/CuBr/bpy as the initiating system; Second, polystyrene was further used as macroinitiator for the ATRP of octadecyl acrylate to prepare ABA triblock copolymers in the presence of FeCl2·4H2O/PPh3 in toluene. Polymers with controlled molecular weight (Mn = 17,000–23,400) and low polydispersity index value (1.33–1.44) were obtained. The relationship between molecular weight versus conversion showed a straight line. The effect of reaction temperature on polymerization was also investigated, showing a faster polymerization rate under higher temperature. The copolymers were characterized by FTIR, 1H‐NMR, DSC, and GPC and the crystallization behavior of the copolymers was also studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1539–1545, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号