首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to obtain polyamides with enhanced solubility and processability, as well as good mechanical and thermal properties, several novel polyamides containing sulfone‐ether linkages and xanthene cardo groups based on a new diamine monomer, 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX), were investigated. The BAPX monomer was synthesized via a two‐step process consisting of an aromatic nucleophilic substitution reaction of readily available 4‐chloronitrobenzene with 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Four novel aromatic polyamides containing sulfone‐ether linkages and xanthene cardo groups with inherent viscosities between 0.98 and 1.22 dL g?1 were prepared by low‐temperature polycondensation of BAPX with 4,4′‐sulfonyldibenzoyl chloride, 4,4′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride, 3,3′‐[sulfonyl‐bis(4‐phenyleneoxy)]dibenzoyl chloride and 4,4′‐[sulfonyl‐bis(2,6‐dimethyl‐1,4‐phenyleneoxy)]dibenzoyl chloride in N,N‐dimethylacetamide (DMAc) solution containing pyridine. All these new polyamides were amorphous and readily soluble in various polar solvents such as DMAc and N‐methylpyrrolidone. These polymers showed relatively high glass transition temperatures in the range 238–298 °C, almost no weight loss up to 450 °C in air or nitrogen atmosphere, decomposition temperatures at 10% weight loss ranging from 472 to 523 °C and 465 to 512 °C in nitrogen and air, respectively, and char yields at 800 °C in nitrogen higher than 50 wt%. Transparent, flexible and tough films of these polymers cast from DMAc solution exhibited tensile strengths ranging from 78 to 87 MPa, elongations at break from 9 to 13% and initial moduli from 1.7 to 2.2 GPa. Primary characterization of these novel polyamides shows that they might serve as new candidates for processable high‐performance polymeric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
A series of fluorinated polyamides was prepared directly by low‐temperature polycondensation of a new cardo diacid chloride, 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]xanthene (BCPX), with various diamines containing trifluoromethyl substituents in N,N‐dimethylacetamide (DMAc). Almost all polyamides showed excellent solubility in amide‐type solvents such as DMAc and could also be dissolved in pyridine, m‐cresol, and tetrahydrofuran. These polymers had inherent viscosities between 0.77 and 1.31 dL g?1, and their weight‐average molecular weights and number‐average molecular weights were in the range of 69,000–102,000 and 41,000–59,000, respectively. The resulting polymers showed glass transition temperatures between 240–258°C and 10% weight loss temperatures ranging from 484°C to 517°C and 410°C to 456°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 55%. All polymers were amorphous and could be cast into transparent, light‐colored, and flexible films with tensile strengths of 81–100 MPa, elongations at break of 8–12%, and tensile modulus of 1.6–2.1 GPa. These polymers had low‐dielectric constants of 3.34–3.65 (100 kHz), low‐moisture absorption in the range of 0.76–1.91%, and high transparency with an ultraviolet–visible absorption cut‐off wavelength in the 322–340 nm range. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

5.
Random copolyimides with different proportions of a diamine component were prepared by polymerizing different compositions of diamines with various dianhydrides and imidized thermally to 260°C. The imidization percent of poly(amic acid) was characterized at various temperatures by infrared spectroscopy. The homopolyimide based on bis[4‐(3‐aminophenoxy)phenyl]sulfone and pyromellitic dianhydride was the only one soluble. By changing the compositions of bis[4‐(3‐aminophenoxy)phenyl]sulfone and other diamines with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone, soluble random copolyimides could be prepared. By random copolymerization, the thermal properties and viscosities of homopolyimide could be controlled. All the soluble polyimides prepared in this work were amorphous because of the lack of stereoregularity. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 272–277, 1999  相似文献   

6.
A series of aromatic polyamides containing an s‐triazine ring with thiophenoxy linkages was synthesized from two new diacids, namely 2,4‐bis‐(4‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine and 2,4‐bis‐(3‐carboxyphenoxy)‐6‐thiophenoxy‐s‐triazine, and commercially available aromatic diamines by using Yamazaki's phosphorylation reaction. The polyamides were obtained in good yields and were characterized by solubility tests, viscosity measurements, FTIR, 1H and 13C NMR spectroscopy, X‐ray diffraction studies and thermogravimetric analysis. The polyamides were found to have inherent viscosities in the range of 0.35 to 0.56 dl g?1 in N,N‐dimethylacetamide (DMAc) at 30 ± 0.1 °C. All the polyamides were readily soluble in solvents such as DMAc, N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF) and m‐cresol. Thermogravimetric analysis of the polyamides indicated no weight loss below 345 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A novel monomer, bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide, was synthesized through the reaction of bis(4‐chloroformylphenyl) phenyl phosphine oxide with fluorobenzene. Three poly(ether ether ketone ketone)s derived from bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide and different aromatic bisphenols were prepared by aromatic nucleophilic substitution reactions. The resulting polymers had inherent viscosities in the range of 0.55–0.73 dL/g. The structures of the poly(ether ether ketone ketone)s were characterized with Fourier transform infrared and 1H‐NMR. Thermal analysis indicated that the glass‐transition temperatures of the poly(ether ether ketone ketone)s were higher than 200°C, and the 5% weight loss temperatures in nitrogen were higher than 463°C. All the polymers showed excellent solubility in polar solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide, and dimethylacetamide and could also be dissolved in chlorinated methane. The polymers afforded transparent and flexible films by solvent casting. Organic phosphorous moieties also imparted good flame‐retardancy to the polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
New polyesters containing both silane and “cardo” groups were synthesized by solution polycondensation involving the reaction of bis(4-chlorocarbonylphenyl)dimethylsilane with cardo bisphenols, namely, phenolphthalein, phenolphthalimidine, and phenolphthalein anilide. Copolyesters were obtained by using different proportions of phenolphthalein and phenolphthalein anilide. Polyesters had inherent viscosities in the range 0.22–0.70 dL/g and were readily soluble in chlorinated hydrocarbons and polar aprotic solvents. Polyesters showed glass transition temperatures in the range 168–255°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 416°C in a nitrogen atmosphere. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1329–1335, 1997  相似文献   

9.
9,9‐Bis(4‐hydroxyphenyl)xanthene (BHPX), a bisphenol monomer, was synthesized in 82% yield from xanthenone in a one‐pot, two‐step synthetic procedure. Four novel aromatic poly(ether ketone)s (PEKs) based on BHPX were prepared via a nucleophilic aromatic substitution polycondensation with four difluorinated aromatic ketones. The polycondensation proceeded in tetramethylene sulfone in the presence of anhydrous potassium carbonate and afforded the new cardo PEKs in nearly quantitative yields with inherent viscosities of 0.77–0.85 dL/g. High molecular weight PEKs having number‐average molecular weights (Mn's) in the range of 38,900–40,600 g/mol with the polydispersity index ranged from 1.97 to 2.06 are all amorphous and show high glass transition temperatures ranging from 210°C to 254°C, excellent thermal stability, and the temperatures at the 5% weight loss are over 538°C with char yields above 60% at 700°C in nitrogen. These new PEKs are all soluble in polar aprotic solvents such as N‐methyl‐2‐pyrrolidone and N, N′‐dimethylacetamide and could also be dissolved in chloroform and tetrahydrofuran. All the polymers formed transparent, strong, and flexible films with tensile strengths of 78–84 MPa, Young's moduli of 2.54–3.10 GPa, and elongations at break of 14–18 %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A series of novel aromatic polyamides containing both fluorene or xanthene cardo moieties and fluorinated phenoxy pendant groups were synthesized from two fluorinated isophthaloyl chlorides and four diamines containing cardo groups by the low‐temperature solution polycondensation in N,N‐dimethylacetamide (DMAc). The obtained polymers were characterized by different physicochemical techniques. All the polymers were amorphous and readily soluble in many organic solvents such as DMAc, N‐methyl‐2‐pyrrolidinone, N,N‐dimethylformamide, dimethyl sulfoxide, pyridine, and tetrahydrofuran at room temperature. The new fluorinated polyamides had high thermal stability with the glass transition temperatures of 237–259°C, the temperatures at 5% weight loss of 437–476°C in nitrogen. All the polymers formed transparent, strong, and flexible films with tensile strengths of 70.6–87.5 MPa, tensile moduli of 2.23–2.78 GPa, and elongations at break of 5.8–8.7%. These polyamide films had high optical transparency with an ultraviolet–visible absorption cutoff wavelength of 352–368 nm, low dielectric constants of 3.24–3.45 (1 MHz), and lower water absorptions of 1.06–1.43%. POLYM. ENG. SCI., 57:1234–1241, 2017. © 2017 Society of Plastics Engineers  相似文献   

11.
A new monomer, 2,5‐bis(4‐carboxy methylene phenyl)‐3,4‐diphenyl thiophene (V) has been synthesized and characterized by physical and spectroscopic methods. A series of eight aromatic–aliphatic polyamides was prepared from the (V) and different aromatic diamines using Yamazaki's direct phosphorylation reaction. The polyamides were characterized by IR spectroscopy, viscosity measurements, and thermal analysis. An excellent yield of these polyamides was obtained, with inherent viscosities in the range of 0.28 to 0.67 dL/g, and the polyamide were readily soluble in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone, N‐N‐dimethyl acetamide, dimethyl sulphoxide, and so forth. Polyamides could be cast into transparent and flexible films. They had glass‐transition temperatures of 225–273°C. When evaluated by thermogravimetry, thermal analysis of the polyamides showed no weight loss below 311°C, and the char yield in air at 900°C was 55%–67%. The structure–property correlation among these polyamides is also discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 566–571, 2001  相似文献   

12.
Polyamides containing arylene sulfide as well as arylene sulfide-sulfone linkages were prepared from bis(4-phenylthio)dibenzoyl chloride (BPCl), 4,4′-[sulfonylbis(4-phenylthio)]dibenzoyl chloride (SPCl) and aromatic diamines both by solution and interfacial polymerization techniques. In the solution polymerization the effect of two different acid acceptors, lithium chloride and triethylamine, on inherent viscosity of the polyamides was studied. The effect of aromatic sulfone ether diamines and conventional aromatic diamines on viscosity and thermal properties of polyamides was also investigated. The polyamides prepared were characterized by IR, 1H NMR, elemental analysis, solution viscosity, thermogravi-metry, differential scanning calorimetry and X-ray diffraction. Thermal and physical properties of polyamides prepared from BPCl and SPCl were compared.  相似文献   

13.
A series of novel fluorine containing aromatic polyamides were synthesized by the direct polycondensation of various fluorine containing aromatic diamines and commercially available 5‐t‐butyl isophthalic acid. These polyamides have good solubility in several organic solvents such as dimethylformamide, N,N‐dimethylacetamide, 1‐Methyl‐2‐pyrrolidone, dimethyl sulfoxide, and tetrahydrofuran. The synthesized polymers exhibited inherent viscosities up to 0.93 dL/g and Mw up to 1,52,000 with PDI of 2.49. The polyamides exhibited good thermal stability up to 489°C for 10% weight loss in nitrogen and high glass transition temperature up to 273°C. Dynamic mechanical analysis showed a very good retention of storage modulus up to the glass transition temperature. The tan δ peak value at 1 Hz was used to calculate the Tg and these values are in good agreement with differential scanning calorimetry data. The polyamide films were flexible with tensile strength up to 72 MPa, elongations at break up to 14%, and modulus of elasticity up to 1.39 GPa depending on the exact repeating unit structure. X‐ray diffraction measurements indicate that these polyamides are semicrystalline. Rheology study showed same trend of melt viscosity behavior with different shear rate for all polymers. Water absorption study indicates the hydrophobic nature of the polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
A series of copolyimides (co‐PIs) with high molecular weights, excellent mechanical properties, heat‐resistant properties, and good solubilities in organic solvents were synthesized from six kinds of commercial dianhydrides (IIa–f) and 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene (I). Monomers (IIa–d) for synthesizing insoluble PIs and monomers (IIe,f) for synthesizing soluble PIs were used to synthesize co‐PIs with arbitrary solubilities. Nine kinds of soluble co‐PIs (IIIa–e and IVa–d) were synthesized through chemical or thermal cyclodehydration. These co‐PIs were found to be easily soluble as well as able to be processed by casting from their solutions such as NMP, DMAc, m‐cresol, pyridine, THF, and CH2Cl2. The easily dissolved characteristics of this series of co‐PIs stemmed from the t‐butyl group and ether group within I. Besides, when the used dianhydride molecules contained the organosoluble groups, the solubilities in organic solvents could be greatly enhanced. The co‐PIs could improve the processability of polymers, while increasing their flexible mechanical properties and maintaining their excellent heat‐resistant properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 87–95, 2000  相似文献   

15.
以二苯硫醚为原料,经氯磺酸磺化、锌粉和冰醋酸还原制得4,4′-二巯基二苯硫醚,然后在氢氧化钠作用下,4,4′-二苯硫醚与2-甲基丙烯酰氯酯化,生成目的产物4,4′-二巯基二苯硫醚双甲基丙烯酸酯。考察了反应溶剂,还原剂锌粉用量及阻聚剂种类对反应的影响。产品结构经红外光谱,核磁共振和元素分析得到确证,总收率52.3%。  相似文献   

16.
A series of new flourine-containing polyimides have been synthesized from the condensation of 2,2,-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-amino-phenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, or 2,2bis[4-(4-amino-2-trifluoro-methylphenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane with various aromatic dianhydrides. The electric constant at 1 KHz in the flourine-containing polyimides decreases from 3.51 to 2.72 as flourine content increases. The poly(amic acid)s had inherit viscosities of 0.52–1.23 dL/g, depending on the diamines and dianhydrides. Most of the resulting polymers showed an amorphous nature and afforded flexible and tough films. The amount of moisture absorption decreases as flourine content in polyimides increases. The glass transition temperatures of these polyimides were in the range of 287–328°C, and the 10% weight loss temperatures were above 542°C in the nitrogen. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 609–617, 1997  相似文献   

17.
Novel bisphenol monomers ( 1a‐d ) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4‐tert‐butylanilne, respectively. A series of cardo poly(arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a‐d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H2, O2, N2, and CO2. The polymers showed high glass transition temperature in the range 230–296°C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410°C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O2 and 13.80 barrers to CO2, with ideal selectivity factors of 4.24 for O2/N2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure–property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4‐tert‐butylphenyl group improved the gas permeability of polymers evidently. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Six new polyamides 5a‐f containing flexible trimethylene segments in the main chain were synthesized through the direct polycondensation reaction of 1,3‐(4‐carboxy phenoxy) propane 3 with six derivatives of aromatic diamines 4a‐f in a medium consisting of N‐methyl‐2‐pyrrolidone, triphenyl phosphite, calcium chloride, and pyridine. The polycondensation reaction produced a series of novel polyamides containing flexible trimethylene segments in the main chain in high yield with inherent viscosities between 0.32 and 0.68 dL/g. The resulted polymers were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity, and solubility tests. Thermal properties of these polymers were investigated by using thermal gravimetric analysis (TGA) and differential thermal gravimetric (DTG). The glass‐transition temperatures of these polyamides were recorded between 165 and 190°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 360 to 430°C under nitrogen. 1,3‐(4‐Carboxy phenoxy) propane 3 was prepared from the reaction of 4‐hydroxy benzoic acid 1 with 1,3‐dibromo propane 2 in the presence of NaOH solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

20.
A novel monomer of tetrachloroterephthaloyl chloride (TCTPC) was prepared by the chlorination of terephthaloyl chloride catalyzed by ferric chloride at 175–180°C for 10 h, and confirmed by FTIR, MS, and elemental analysis. A series of new polychloro substituted polyamides with inherent viscosities of 1.17–1.28 dL/g have been prepared from TCTPC with various aromatic diamines. All the polyamides were amorphous and readily soluble in polar solvents such as NMP, DMAc, DMF, and DMSO at room temperature, and could afford flexible and tough films via solution casting. The cast films exhibited good mechanical properties with tensile strengths of 83.6–106.8 MPa, elongations at breakage of 3.9–7.1%, and tensile modulus of 2.28–3.98 GPa. These polyamide films also exhibited good thermal stability with the glass transition temperature of 250–284°C, the temperature at 5% weight loss of 470–504°C and high char yields of 57.8–59.7% in nitrogen. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号