首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water‐blown rigid polyurethane foam (PUF) with two different particle sizes (180 and 300 μm) of expandable graphite (EG) as a flame‐retardant additive were prepared, and the effects on the mechanical, morphological, water absorption, thermal conductivity, thermal, and flame‐retardant properties were studied. In this investigation, EG content was varied from 5 to 50 php by weight. The mechanical properties of PUF decreased with increasing EG loading in both cases. The water absorption of the PUF increased with an increase in the EG loading mainly because of the collapse of foam cells, as evidenced from the scanning electron microscopy pictures. The thermal conductivity of the EG‐filled PUF showed that the insulation properties decreased with EG loading. The flame‐retardant properties (limiting oxygen index and char yield measurement) of the PUF improved with increasing EG loading. PUF filled with the higher particle size EG showed better mechanical properties and fire‐retardant properties than the PUF filled with the lower particle size EG. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
In this work, the effect of expandable graphite (EG) and ammonium polyphosphate (APP) on the flame retardancy and mechanical properties of the rigid polyurethane foam (RPUF) was studied. The results indicated that both EG and APP could effectively improve the flame retardancy of RPUF, while the retardancy of EG was better than APP. When the flame‐retardant loading was 15 wt %, the limited oxygen index (LOI) values of APP‐ and EG‐filled RPUF were 24.5 and 32 vol %, respectively. According to the LOI test, the optimal ratio of APP to EG in RPUF composites was 1 : 1 by weight, at which the LOI value of 15 wt % (APP + EG)/RPUF was 30.5 vol %. Thermal degradation test of RPUF composites by thermogravimetric analysis indicated that the addition of APP and EG to RPUF could lead to an increase in the amount of high‐temperature residue. Under the same conditions, the residue amount of EG/RPUF was less than that of APP/RPUF at the same temperature. Compression test and dynamic thermal mechanical analysis indicated that both the compressive strength and modulus decreased at a certain extent with the EG‐ or APP‐filled into RPUF, respectively, but with the mixture of EG and APP added into RPUF, the mechanical properties of these materials increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
A novel flame‐retardant poly (vinyl alcohol) (PVA) composite foam was prepared successfully through thermal processing, which was filled with high content of flame retardant, based on aluminum hydroxide (ATH) and aluminum phosphinate (AlPi) and using water as plasticizer and blowing agent. The flame‐retardant property and mechanism of the prepared foam matrix were studied by vertical burning test, limiting oxygen index (LOI), cone calorimeter, scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The experimental results showed that the PVA/ATH/AlPi (1/1.2/0.05) composite achieved LOI value of 41% and UL94 V‐0 (3.2 mm) rate. The addition of ATH and AlPi into PVA matrix significantly decreased flammability of the composites, because a more compact and continuous char layer of the PVA/ATH/AlPi composite could be formed, due to the involvement of AlPi in the char‐forming reaction. Compared with the pure PVA sample, the peak heat release rate (PHRR) and total heat release (THR) of PVA/ATH/AlPi (1/1.2/0.05) composite were reduced by 76.5% and 58.2%, respectively. Built upon this PVA‐based foam matrix with good flame retardancy, the flame‐retardant PVA‐based foam was successfully prepared through thermal extrusion. In addition, the influence of water content on melt viscosity, foam structure and mechanical strength was also analyzed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42020.  相似文献   

4.
The effects of zinc borate (ZB), aluminum trihydrate (ATH), and their mixture on the flame‐retardant and smoke‐suppressant properties of poly(vinyl chloride) (PVC) as well as their mechanism for flame retardancy and smoke suppression were studied through the limiting oxygen index (LOI) test, smoke density test, TGA, GC–MS, and SEM. The results show that incorporation of a small amount of ZB, ATH, and their mixture can greatly increase the LOI of PVC and reduce the smoke density of PVC during combustion. The mixture of ZB with ATH has a good synergistic effect on the flame retardance and smoke suppression of PVC. TGA and GC–MS analyses results show that incorporation of a small amount of ZB, ATH, and their mixture greatly promotes the char formation of PVC and decreases the amount of hazardous gases such as benzene and toluene released in PVC during combustion. Their mechanism is also proposed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3119–3127, 2000  相似文献   

5.
The building and construction industry is under increasing pressure to make insulation materials greener, more sustainable, and less flammable. In this study, sugar beet pulp was liquified under the optimized liquefaction conditions and used as the source of bio-polyol (SBpol) in the production of bio-based rigid polyurethane foam (sPUF). In order to improve the flame retardancy, sPUF composites were prepared with the addition of flame retardants; expandable graphite (EG) and/or dimethyl methyl phosphonate (DMMP). The bio-polyol was used at a fixed ratio of 50 php in sPUF composites whereas the total ratio of flame retardants was fixed at 20 php. The effects of the ratio of EG and/or DMMP on the morphological, physicomechanical, thermal, and flame retardant properties of sPUF composites were evaluated. Although the thermal conductivity values of flame retardant added sPUF composites were increased in comparison to the petroleum-based foam, the compressive strength values were decreased as the amount of DMMP increased in the flame retardant formulation. Thermogravimetric analysis showed that the onset of decomposition of 20 php DMMP-containing sPUF composite decreased to 168.3°C. Although the limiting oxygen index (LOI) value of the petroleum-based PUF was as low as 19.7%, the LOI value of the sPUF/10E/10D foam increased to 24.9% (by about 26%). According to the cone calorimeter results, the peak heat release rate (pHRR) of sPUF was much higher than the petroleum-based foam. The incorporation of both DMMP and EG could further improve the flame retardant properties. The pHRR value of sPUF/10E/10D was 28.1% lower than that of sPUF. The results have shown that flame retardancy of sPUF composites could be improved by the addition of EG which acts in the condensed phase and DMMP, which acts mainly in the gas phase during burning. Flame retardant incorporated sPUF composites are considered as promising materials for use in insulation applications.  相似文献   

6.
Phenolic foam exhibits outstanding flame, smoke and toxicity properties, good insulation properties and low production costs. However, the brittleness and pulverization of phenolic foam have severely limited its application in many fields. In this study, a novel phosphorus‐containing polyurethane prepolymer (DOPU) modifier was firstly synthesized, and then the foaming formula and processing of toughening phenolic foam modified with DOPU and glass fiber were explored. The structure and reactive behavior of prepolymer and phenolic resin were investigated using Fourier transform infrared spectroscopy. The effects of DOPU and glass fiber on the apparent density, compressive strength, bending strength and water absorption were investigated. The results suggested that the apparent density, compressive strength and bending strength of modified phenolic foam tended to increase irregularly with increasing content of DOPU. The addition of DOPU led to lower water absorption of glass fiber‐filled foam. Thermal stability and flame retardancy were examined using thermogravimetric analysis and limiting oxygen index (LOI) tests. It was found that foam with 3% DOPU and 0.5% glass fiber added exhibited good thermal stability and high char yields. The LOI value of modified phenolic foams decreased with increasing DOPU content, but it still remained at 41.0% even if the amount of modifier loaded was 10 wt%. © 2012 Society of Chemical Industry  相似文献   

7.
Rigid polyurethane foam (RPUF) composites with triphenyl phosphate (TPhP), aluminum trihydrate (ATH), and zinc borate (ZnB) alone, as well as their binary blends, were prepared via a one-shot process. The amount of flame retardant (FR) or FR blend was varied from 10 to 50% by polyol weight percentage, and the weight fraction of the blends was also fixed at 40%. The effects of additives on thermal insulation, mechanical, and flame retardancy properties of the composites were investigated. Thermal conductivity of the neat foam (RPUF) decreased from 22.53 to 21.04–21.58 mW m−1 K−1. The compressive strength of foams displayed an increase with increasing the amount of TPhP, ATH, and ZnB till 40% by weight. The limited oxygen index values of all foams increased and the flame spread rates of all foams significantly decreased. It was also observed that the flame was self-extinguished in some cases. The cone calorimeter test results indicated that the FR additives improved the flame retardancy of the RPUF. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47611.  相似文献   

8.
The halogen‐free flame retardant (HFFR) ethylene‐vinyl acetate copolymer (EVM)/ATH/SiO2 composites have been prepared by melting compounding method, and the flame retardant, thermal stability, rheological, electrical, and mechanical properties have been investigated by cone calorimeter, LOI, UL‐94, TG, FE‐SEM, rotational rheometer, dielectric breakdown, and ultimate tensile. The results indicate that the flame retardant of EVM vulcanizates is improved and the fire jeopardizing is dramatically reduced due to the addition of ATH. It is necessary that sufficient loading of ATH (≥120 phr) is needed to reach essential level (LOI > 30; V‐0 rating) of flame retardant for HFFR EVM/ATH/SiO2 composites used as cable in industry. The rheological characteristics show that at all the measurement frequencies, the storage and loss modulus of the composites increase monotonously as the concentration of ATH filler increases, while the complex viscosity and tan delta present reverse trend. And also, it has been found that the HFFR composites at high filler concentrations still keep good mechanical and electrical properties, which is very important for practical applications as cable. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Acrylonitrile butadiene rubber (NBR) foams compounded with various halogen‐free flame retardants were prepared. The influence of nonhalogen flame retardants on the flame resistance and foaming properties of the NBR compounds were investigated. The foaming properties (expandability 980%–1050%, closed‐cell structure) of NBR compounds with expandable graphite (EG) and ammonium polyphosphate (APP) flame retardants were similar to the NBR base compounds which contained primarily aluminum hydroxide (ATH). The heat release capacity (HRC) ranged from 10 to 74 J/g‐K, the average heat release rate (A‐HRR) ranged from 8 to 60 kW/m2, and the total heat release (THR) ranged from 2.6 to 7.3 MJ/m2 for the nonhalogenated NBR foams with closed‐cell structure and were significantly decreased upon increasing the amounts of flame retardants. This reduction is attributed to the hard char formation and production of water from the interaction with ATH. The limiting oxygen index (LOI) and time to ignition (TTI) show opposite results. The smoke density (0.050–0.037) of the NBR foams with EG flame retardant was decreased when compared to the NBR foam (0.107). The EG flame retardant was more effective than the phosphorus/nitrogen flame retardants in reducing the HRR and smoke density. The use of both ATH and EG is very effective in improving flame resistance. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

10.
Rigid polyurethane foams (RPUF) filled with various loadings of expandable graphite (EG) or/and hollow glass microspheres (HGM) were prepared by cast molding. The flame retardant properties of these composites were investigated by limiting oxygen index (LOI), horizontal and vertical burning tests. The composite with 10 wt % HGM and 20 wt % EG had the best flame retardant properties, and its LOI value reached 30 vol %. The addition of an appropriate loading of HGM improved the compressive strength and modulus of RPUF and EG/RPUF. When the HGM content arrived at 10 wt %, the compressive strength and modulus of the composites reached the maximum value. The dynamical mechanical analysis (DMA) showed that the addition of EG and HGM made the glass transition temperature shift to a higher temperature, and 10 wt % EG and 10 wt % HGM filled RPUF had the highest storage modulus. The scanning electronic microscope (SEM) observation indicates that the additives led to the decrease in the cell size. In addition, the flame retardant mechanism, the thermal properties, the burned surfaces and the interface surfaces were elucidated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The article reported the flame‐retardant and the mechanical properties of expandable graphite (EG), an intumescent type, and decabrominated dipheny ethane (DBDPE), a gas‐phase type of flame‐retardant‐containing high‐density rigid polyurethane foams (RPUF) with a constant density of 0.5g/cm3. The results indicated that both EG and DBDPE could effectively interdict the burning of RPUF, besides, the EG exhibited more effective flame retardancy than the DBDPE. When the flame‐retardant loadings were 20 wt %, the LOI value of DBDPE‐filled RPUF increased to 33 vol %, while, surprisingly, the EG‐filled RPUF reached 41 vol %. Unfortunately, when they were both simultaneously added into RPUF, there was not any flame‐retardant synergistic effect. Although EG had outstanding flame retardancy, the compressive strength and modulus of 20 wt % EG‐filled RPUF dropped to only 9.1MPa and 229.7MPa respectively, which were lower than those of DBDPE (12.4 MPa and 246.8 MPa). The phenomena were ascribed to the different flame‐retardant mechanisms of EG and DBDPE, which were verified by scanning electronic microscope (SEM) observation of the burned surfaces. Besides, the dynamical mechanical analysis (DMA) demonstrated that the additions of EG and DBDPE made the glass transition temperature shift to the high temperatures, and the EG‐filled RPUF had the higher storage modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A novel bio-based P-N containing intumescent flame retardant melamine starch phytate (PSTM) was prepared via the reaction of phytic acid starch ester with melamine and characterized by Fourier transform infrared, scanning electron microscopy and thermogravimetric analysis (TGA). The effects of PSTM on thermal properties and flammability of rigid polyurethane (PU) foams were analyzed by TGA, limit oxygen index (LOI), vertical burning tests (UL-94) and cone calorimeter measurement. The TGA results demonstrated that the thermal stabilities of PU/PSTM foam at high temperature was enhanced with the increasing additive amount of PSTM. The results showed that PU foam with 30 php PSTM (PU/PSTM-30%) observed an LOI value of 25.9 and a UL-94 rating of V-0. Cone calorimetry data showed that peak heat release rate, total heat release and smoke production rate of PU/PSTM-30% were distinctly lower than that of pure PU. Further experimental results demonstrated that PSTM promotes well charring of PU which could protect the foam from combustion. This work developed a novel bio-based intumescent flame retardant by suing phytic acid and starch as the acid source and carbon source, respectively, which is of great significance to the preparation of environmental-friendly flame retardants.  相似文献   

13.
The composites based on ethylene–propylene–diene monomer rubber (EPDM) with aluminum hydroxide (ATH), nanoclay, vulcanizing agent, and curing accelerator were prepared by conventional mill compounding method. The thermal stability and the flame retardant properties were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 test, cone calorimeter, and smoke density chamber tests. The results indicated that the substitution of the nanoclay in the EPDM/ATH composites increased the 50% weight loss temperature and the LOI value, and reduced the peak heat release rate (pk‐HRR), the extinction coefficient (Ext Coef), the maximal smoke density (Dm), and the whole smoke at the first 4 min (VOF4) of the test specimens. The synergistic flame retardancy of the nanoclay with ATH in EPDM matrix could imply that the formation of a reinforced char/nanoclay layer during combustion prevents the diffusion of the oxygen and the decomposed organic volatiles in the flame. The mechanical properties of the composites have been increased by replacing more of the nanoclays into the EPDM/ATH blends. The best loading of the nanoclay in EPDM/ATH composites is 3 wt %, which keeps LOI in the enough value, the V‐0 rating in the UL‐94 test, and the improved mechanical properties with better dispersion and exfoliation of the nanoclays shown by transmission electron microscopy (TEM) micrographs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2042–2048, 2013  相似文献   

14.
The limiting oxygen index (LOI) values of EVA‐PVB and low density polyethylene (LDPE)‐poly(ethylene‐co‐vinyl alcohol) (EVOH) polymer blends containing hydrated filler‐type flame retardants and red phosphorus were measured. When used as the sole flame retardant, magnesium hydroxide [Mg(OH)2] and alumina trihydrate (ATH) performed best in EVA and PVB, respectively. Magnesium hydroxide addition had a limited effect on the LOI of plasticized PVB, and addition of red phosphorus made little difference. This result is attributed to a mismatch between the decomposition temperature of Mg(OH)2 and the temperature at which the PVB plasticizer vaporizes. Otherwise, low‐level addition of red phosphorus significantly improved LOI values. The presence of hydroxyl groups on the polymer backbone had a beneficial effect with respect to LOI values in ATH‐filled blends. An LOI value of 30 was achieved in EVOH with as little as 32% of ATH and 3% of red phosphorus. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
A novel flame‐retardant (SPDH) containing phosphorus was synthesized through the reaction of 10‐(2,5‐dihydroxyphenyl)‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and synthesized intermediate product 3,9‐dichloro‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5] undecane‐3,9‐dioxide, which was used for optimizing the flame retardancy of ethylene‐vinyl acetate copolymer (EVM) rubber/aluminum hydroxide (ATH) composites. The microstructure of SPDH was characterized and determined by Fourier transform infrared and nuclear magnetic resonance spectroscopy. Thermogravimetric analysis (TGA) showed that SPDH had good charring effect at high temperature (600°C). The flame retardancy of the optimized EVM/ATH composites by SPDH was investigated by limiting oxygen index (LOI), cone calorimeter, and UL‐94 vertical burning tests. A higher LOI value (29.8%) and better UL‐94 rating (V‐0) can be achieved for the optimized EVM/ATH composite (EVM‐7) than EVM/ATH composite without SPDH (EVM‐3) with the total loading of additives. The heat release rate decreased and residual mass increased gradually as the loading of SPDH increased for the optimized EVM/ATH composites. There existed distinct synergistic flame‐retardant effect between SPDH and ATH in EVM matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
Melamine amino trimethylene phosphate (MATMP) as a novel nitrogen‐phosphorus flame retardant, was synthesized by the reaction of melamine with amino trimethylene phosphonic acid (ATMP) in aqueous solution. The structure of MATMP was characterized by Fourier transform infrared spectroscopy, solid state 31 P nuclear magnetic resonance, and thermogravimetric analysis. Rigid polyurethane (RPU) foams were prepared by one‐shot and free‐rise method, using MATMP as a flame retardant. The flame retardant, mechanical and thermal properties of MATMP in RPU foams were studied. It is found that the RPU foam containing 15 wt % MATMP (sample RPUMA‐15) can pass the UL‐94 V0 test with a limiting oxygen index of 25.5%. The cone calorimeter test results show that the peak heat release rate of RPUMA‐15 is reduced about 34% compared with that of untreated RPU foam. SEM results indicate that the RPU foams with MATMP can form the good and compact char during burning which provides better flame retardancy. The compressive strength of the RPU foams filled with MATMP first increases and then slightly decreases with an increase in the MATMP content comparing with that of untreated RPU foam. Moreover, thermal conductivities of the MATMP filled RPU foams are about 0.03 W/m K. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45234.  相似文献   

17.
This study investigates the incorporation of castor oil–based rigid polyurethane foam with mineral fillers feldspar or kaolinite clay in order to enhance the mechanical, thermal, and flame retardant properties. Influence of mineral fillers on the mechanical strength was characterized by compressive strength and flexural strength measurement. Thermogravimetric analysis (TGA) was performed to diagnose the changes in thermal properties, while cone calorimeter test was performed to ascertain the flame retardancy of the mineral filler–incorporated rigid polyurethane foam composites. Results showed that the foams incorporated with mineral filler demonstrated up to 182% increase in compressive strength and 351% increase in flexural strength. Thermal stability of these composite foams was also found to be enhanced on the incorporation of kaolinite clay filler with an increase in 5% weight loss temperature (T5%) from 192°C to 260°C. Furthermore, peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), and total smoke release (TSR) were also found to decreased on the incorporation of mineral filler in the rigid polyurethane foam. So mineral fillers are ascertained as a potential filler to enhance the mechanical, thermal, and flame retardant behaviors of bio‐based rigid polyurethane foam composites.  相似文献   

18.
Polyurethane foam was fabricated from polymeric diphenylmethane diisocyanate (pMDI) and soy‐based polyol. Nanoclay Cloisite 30B was incorporated into the foam systems to improve their thermal stabilities and mechanical properties. Neat polyurethane was used as a control. Soy‐based polyurethane foams with 0.5–3 parts per hundred of polyols by weight (php) of nanoclay were prepared. The distribution of nanoclay in the composites was analyzed by X‐ray diffraction (XRD), and the morphology of the composites was analyzed through scanning electron microscopy (SEM). The thermal properties were evaluated through dynamic mechanical thermal analysis (DMTA). Compression and three‐point bending tests were conducted on the composites. The densities of nanoclay soy‐based polyurethane foams were higher than that of the neat soy‐based polyurethane foam. At a loading of 0.5 php nanoclay, the compressive, flexural strength, and modulus of the soy‐based polyurethane foam were increased by 98%, 26%, 22%, and 65%, respectively, as compared to those of the neat soy‐based polyurethane foam. The storage modulus of the soy‐based polyurethane foam was improved by the incorporation of nanoclay. The glass transition temperature of the foam was increased as the nanoclay loading was increased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The chemical nature of flexible polyurethane (flex PU) foams, the low density, the high air permeability and the open cell structure cause this material to be highly flammable. The new phosphorus flame‐retardant (FR) methyl‐DOPO (9, 10‐dihydro‐9‐oxa‐methylphosphaphenanthrene‐10‐oxide) is known to show an excellent flame retarding behavior in flex PU foam by acting mainly in the gas phase. In this study, the FR working mechanism of methyl‐DOPO and its ring‐opened analogue MPPP (methylphenoxyphenyl‐phosphinate) is investigated by TGA, TG–MS, FMVSS 302 and Cone Calorimeter measurements. Under TG–MS conditions comparable concentrations of low molecular weight species such as HPO, mathrmCH3PO or PO2 are released. These species are able to scavenge the H‐ and OH‐radicals in the radical chain reactions of the flame leading to a significant increase in the CO/CO2 ratio and the smoke density during cone calorimeter experiments. Finally, the flame retardancy of MPPP is determined to be less efficient in flex PU foam because of the higher vapor pressure compared with methyl‐DOPO. Here, the vaporization of methyl‐DOPO occurs in the same temperature region as the depolymerization of the urethane and the bisubstituted urea groups during pyrolysis of the foam leading to an optimal interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Urea formaldehyde resin (UF) was modified by introducing melamine during the condensation in order to reduce the amount of free formaldehyde and increase the solid content. The melamine modified UF (MUF) was firstly mixed with intumescent flame retardant (IFR) and then coated on the surface of pre‐expanded polystyrene (PS) particles to prepare flame retardant expandable PS (EPS) foams. The flammability of EPS foam samples was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter tests, and the results indicated that the peak heat release rate was significantly reduced from 406 to 49 kW/m2 and LOI value could reach 36.3 with V‐0 rating in UL‐94 test after coated with IFR. The smoke density test indicated that the maximum smoke density was decreased by the addition of IFR. Thermal analysis suggested that the thermal stability and char formation were significantly improved by the presence of coated flame retardants. The residual char observation revealed that MUF and IFR were beneficial to form integrated char layers with hollow stents, which could be the main reason for the improvement of flame retardant properties. The mechanical properties of flame retardant EPS foams can still meet the standard requirements for industrial applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44423.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号