首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA strand breaks (SBs) are among the most cytotoxic forms of DNA damage, and their residual levels correlate directly with cell death. Hence, the type and amount of SBs is directly related to the efficacy of a given anticancer therapy. In this study, we describe a molecular tool that can differentiate between single (SSBs) and double (DSBs) strand breaks and also assess them quantitatively. Our method involves PCR amplification of a linear DNA fragment labeled with a sensitizing nucleotide, circularization of that fragment, and enzymatic introduction of supercoils to transform the circular relaxed form of the synthesized plasmid into a supercoiled one. After exposure of the molecule to a damaging factor, SSB and DSB levels can be easily assayed with gel electrophoresis. We applied this method to prepare an artificial plasmid labeled with 5‐bromo‐2′‐deoxyuridine and to assay SBs photoinduced in the synthesized plasmid.  相似文献   

3.
4.
An investigation of the precise interactions between damaged DNA and DNA repair enzymes is required in order to understand the lesion recognition step, which is one of the most fundamental processes in DNA repair. Most recently, photoaffinity labeling approaches have enabled the analysis of even transient protein‐DNA interactions. Here we report the synthesis and evaluation of oligonucleotides that contain two photoaffinity “catcher moieties” next to incorporated DNA lesions. With these DNA constructs it is possible to analyze the interactions between DNA lesions and the appropriate repair enzymes. The probes labeled the repair protein efficiently enough to enable subsequent protein analysis by mass spectrometry.  相似文献   

5.
O6‐Alkylguanine‐DNA alkyltransferases (AGTs) are responsible for the removal of O6‐alkyl 2′‐deoxyguanosine (dG) and O4‐alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O6‐alkylguanine‐DNA‐alkyltransferase) protein, which can repair a range of O4‐alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O4‐alkyl 2′‐deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada‐C and OGT), human AGT, and an OGT/hAGT chimera to remove O4‐methyl and larger adducts (4‐hydroxybutyl and 7‐hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O4‐methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O4 atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct‐containing oligonucleotides and the amounts of repair measured.  相似文献   

6.
The fluorescent 8‐aza‐2′‐deoxyisoguanosine ( 4 ) as well as the parent 2′‐deoxyisoguanosine ( 1 ) were used as protonated dCH+ surrogates in the third strand of oligonucleotide triplexes. Stable triplexes were formed by Hoogsteen base pairing. In contrast to dC, triplexes containing nucleoside 1 or 4 in place of dCH+ are already formed under neutral conditions or even at alkaline pH values. Triplex melting can be monitored separately from duplex dissociation in cases in which the third strand contains the fluorescent nucleoside 4 . Third‐strand binding of oligonucleotides with 4 , opposite to dG, was selective as demonstrated by hybridisation experiments studying mismatch discrimination. Third‐strand binding is more efficient when the stability of the DNA duplex is reduced by mismatches, giving third‐strand binding more flexibility.  相似文献   

7.
Oligonucleotides containing various adducts, including ethyl, benzyl, 4‐hydroxybutyl and 7‐hydroxyheptyl groups, at the O4 atom of 5‐fluoro‐O4‐alkyl‐2′‐deoxyuridine were prepared by solid‐phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5‐fluoro‐2′‐deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B‐form DNA structure. O6‐Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5‐fluoro‐O4‐benzyl‐2′‐deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4‐ethyl and benzyl adducts of 5‐fluoro‐2‐deoxyuridine. Computational assessment of N1‐methyl analogues of the O4‐alkylated nucleobases revealed that the C5‐fluorine modification had an influence on reducing the electron density of the O4?Cα bond, relative to thymine (C5‐methyl) and uracil (C5‐hydrogen). These results reveal the positive influence of the C5‐fluorine atom on the repair of larger O4‐alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.  相似文献   

8.
9.
10.
There is currently significant interest in the development of G‐quadruplex‐interactive compounds, given the relationship between the ability to stabilize these non‐canonical DNA structures and anticancer activity. In this study, a set of biophysical assays was applied to evaluate the binding of six drug‐like ligands to DNA G‐quadruplexes with different folding topologies. Interestingly, two of the investigated ligands showed selective G‐quadruplex‐stabilizing properties and biological activity. These compounds may represent useful leads for the development of more potent and selective ligands.  相似文献   

11.
DNA duplexes containing 8‐cyclopropyl‐2′‐deoxyguanosine (8CPG) were synthesized to investigate the effect of the C8‐modified deoxyguanosine as a kinetic trap for transient hole occupancy on guanines during DNA‐mediated hole transport (HT). Thermal denaturation and CD spectra show that DNA duplexes containing 8CPG are able to form stable B‐form duplexes. Photoirradiation of terminal tethered anthraquinone can induce oxidative decomposition of 8CPG through DNA HT along adenine tracts with lengths of up to 4.8 nm. Shallow and periodic distance dependence was observed in a long adenine tract with intervening guanines. The efficient charge transport indicates that 8CPG can electronically couple well with a DNA bridge and form HT‐active conformational domains to facilitate transient hole delocalization over an adenine tract.  相似文献   

12.
Along with biocompatibility, chemical stability, and simplicity of structural prediction and modification, deoxyribozyme‐based molecular sensors have the potential of an improved detection limit due to their ability to catalytically amplify signal. This study contributes to the understanding of the factors responsible for the limit of detection (LOD) of RNA‐cleaving deoxyribozyme sensors. A new sensor that detects specific DNA/RNA sequences was designed from deoxyribozyme OA‐II [Chiuman, W.; Li, Y. (2006) J. Mol. Biol. 357, 748–754]. The sensor architecture allows for a unique combination of high selectivity, low LOD and the convenience of fluorescent signal monitoring in homogeneous solution. The LOD of the sensor was found to be ~1.6×10?10 M after 3 h of incubation. An equation that allows estimation of the lowest theoretical LOD using characteristics of parent deoxyribozymes and their fluorogenic substrates was derived and experimentally verified. According to the equation, “catalytically perfect” enzymes can serve as scaffolds for the design of sensors with the LOD not lower than ~2×10?15 M after 3 h of incubation. A new value termed the detection efficiency (DE) is suggested as a time‐independent characteristic of a sensor's sensitivity. The expressions for the theoretical LOD and DE can be used to evaluate nucleic acid and protein enzymes for their application as biosensing platforms.  相似文献   

13.
14.
Gene expression is extensively regulated by the occurrence and distribution of the epigenetic marker 2′‐deoxy 5‐methylcytosine (5mC) in genomic DNA. Because of its effects on tumorigenesis there is an important link to human health. In addition, detection of 5mC can serve as an outstanding biomarker for diagnostics as well as for disease therapy. Our previous studies have already shown that, by processing O6‐alkylated 2′‐deoxyguanosine triphosphate (dGTP) analogues, DNA polymerases are able to sense the presence of a single 5mC unit in a template. Here we present the synthesis and evaluation of an extended toolbox of 6‐substituted 2‐aminopurine‐2′‐deoxyribonucleoside 5′‐triphosphates modified at position 6 with various functionalities. We found that sensing of 5‐methylation by this class of nucleotides is more general, not being restricted to O6‐alkyl modification of dGTP but also applying to other functionalities.  相似文献   

15.
C8‐N‐arylamine adducts of 2′‐deoxyguanosine (2′‐dG) play an important role in the induction of the chemical carcinogenesis caused by aromatic amines. C8‐N‐acetyl‐N‐arylamine dG adducts that differ in their substitution pattern in the aniline moiety were converted by cycloSal technology into the corresponding C8‐N‐acetyl‐N‐arylamine‐2′‐deoxyguanosine‐5′‐triphosphates and C8‐NH‐arylamine‐2′‐deoxyguanosine‐5′‐triphosphates. Their conformation preference has been investigated by NOE spectroscopy and DFT calculations. The substrate properties of the C8‐dG adducts were studied in primer‐extension assays by using Klenow fragment exo? of Escherichia coli DNA polymerase I and human DNA polymerase β. It was shown that the incorporation was independent of the substitution pattern in the aryl moiety and the N‐acetyl group. Although the triphosphates were poor substrates for the human polymerases, they were incorporated twice before the termination of the elongation process occurred; this might demonstrate the importance of C8‐N‐arylamine‐2′‐deoxyguanosine‐5′‐triphosphates in chemical carcinogenesis.  相似文献   

16.
17.
O6‐Methylguanine (O6‐MeG) is a mutagenic DNA lesion, arising from the action of methylating agents on guanine (G) in DNA. Dpo4, an archaeal low‐fidelity Y‐family DNA polymerase involved in translesion DNA synthesis (TLS), is a model for studying how human Y‐family polymerases bypass DNA adducts. Previous work showed that Dpo4‐mediated dTTP incorporation is favored opposite O6‐MeG rather than opposite G. However, factors influencing the preference of Dpo4 to incorporate dTTP opposite O6‐MeG are not fully defined. In this study, we investigated the influence of structural features of incoming dNTPs on their enzymatic incorporation opposite O6‐MeG in a DNA template. To this end, we utilized a new fluorescence‐based primer extension assay to evaluate the incorporation efficiency of a panel of synthetic dNTPs opposite G or O6‐MeG by Dpo4. In single‐dNTP primer extension studies, the synthetic dNTPs were preferentially incorporated opposite G, relative to O6‐MeG. Moreover, pyrimidine‐based dNTPs were generally better incorporated than purine‐based syn‐conformation dNTPs. The results suggest that hydrophobicity of the incoming dNTP appears to have little influence on the process of nucleotide selection by Dpo4, with hydrogen bonding capacity being a major influence. Additionally, modifications at the C2‐position of dCTP increase the selectivity for incorporation opposite O6‐MeG without a significant loss of efficiency.  相似文献   

18.
The environmental pollutant 3‐nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8‐dG‐ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error‐free manner by the human Y‐family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol?DNA?dCTP complex between a C8‐dG‐ABA‐containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error‐free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra‐nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson–Crick pair with the incoming dCTP.  相似文献   

19.
The binding behavior of green fluorescent ligands, derivatives of 7‐nitrobenzo‐2‐oxa‐1,3‐diazole (NBD), with DNA duplexes containing an abasic (AP) site is studied by thermal denaturation and fluorescence experiments. Among NBD derivatives, N1‐(7‐nitrobenzo[c][1,2,5]oxadiazol‐4‐yl)propane‐1,3‐diamine (NBD‐NH2) is found to bind selectively to the thymine base opposite an AP site in a DNA duplex with a binding affinity of 1.52×106 M ?1. From molecular modeling studies, it is suggested that the NBD moiety binds to thymine at the AP site and a protonated amino group tethered to the NBD moiety interacts with the guanine base flanking the AP site. Green fluorescent NBD‐NH2 is successfully applied for simultaneous G>T genotyping of PCR amplification products in a single cuvette in combination with a blue fluorescent ligand, 2‐amino‐6,7‐dimethyl‐4‐hydroxypteridine (diMe‐pteridine).  相似文献   

20.
Cellular DNA continuously suffers various types of damage, and unrepaired damage increases disease progression risk. 8‐Oxo‐2′‐deoxyguanine (8‐oxo‐dG) is excised by repair enzymes, and their analogues are of interest as inhibitors and as bioprobes for study of these enzymes. We have developed 8‐halogenated‐7‐deaza‐2′‐deoxyguanosine derivatives that resemble 8‐oxo‐dG in that they adopt the syn conformation. In this study, we investigated their effects on Fpg (formamidopyrimidine DNA glycosylase) and hOGG1 (human 8‐oxoguanine DNA N‐glycosylase 1). Relative to 8‐oxo‐dG, Cl‐ and Br‐deaza‐dG were good substrates for Fpg, whereas they were less efficient substrates for hOGG1. Kinetics and binding experiments indicated that, although hOGG1 effectively binds Cl‐ and Br‐deaza‐dG analogues with low Km values, their lower kcat values result in low glycosylase activities. The benefits of the high binding affinities and low reactivities of 8‐oxo‐dG analogues with hOGG1 have been successfully applied to the competitive inhibition of the excision of 8‐oxoguanine from duplex DNA by hOGG1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号