首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(vinyl cinnamate) (PVCN) could undergo thermal or photo crosslinking. PVCN was previously found to be miscible with poly(vinyl phenol) (PVPh) [also named poly(hydroxystyrene)]. In this article, the miscibility between PVCN with or without thermal crosslinking and poly(styrene‐co‐hydrostyrene) (designated as MPS) was investigated. PVCN was determined to be miscible with MPS with 15% of hydroxystyrene (MPS‐15) at two compositions but partially miscible or immiscible at PVCN/MPS‐15(50/50) composition. For MPS with 5% of hydroxystyrene (MPS‐5), two Tg values were detected indicating mostly immiscibility. However, PVCN after thermal crosslinking was determined to be miscible with both MPS‐5 and MPS‐15. Immiscibility was found between thermally crosslinked PVCN and PVPh different from miscibility in the original PVCN/PVPh blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Four solid UV‐absorptive oligomers—poly(p‐ethoxycinnamate) ( P2 ), poly(p‐propoxycinnamate) ( P3 ), poly(p‐hexyloxycinnamate) ( P6 ), and poly(p‐undecyloxycinnamate) ( P11 )—were condensation polymerized from p‐(2‐hydroxy‐ethoxy) cinnamic acid, p‐(3‐hydroxy‐propoxy) cinnamic acid, p‐(6‐hydroxy‐hexyloxy) cinnamic acid, and p‐(11‐hydroxy‐undecyloxy) cinnamic acid, respectively. The liquid UV‐absorptive oligomer, poly(pentaethylene glycol cinnamate) (PPGC), was synthesized through the copolymerization between p‐hydroxycinnamic acid and pentaethylene glycol ditosylate. Molecular weights of all five oligomers were in the range of 1600–5500. Absorption profiles of all synthesized polymers indicated UVB absorption characteristics. Upon UVB exposure, trans to cis photoisomerization of all five oligomers was observed, leading to the decrease in their UVB absorption efficiency. No transdermal penetration across a baby mouse skin (Mus musculus Linn.) was detected for the five synthesized oligomers, while the penetration of the standard UVB filter, 2‐ethylhexyl‐p‐methoxycinnamate, through the same skin could be clearly observed. In addition, PPGC, a yellowish water immiscible liquid, showed good solubility in various organic solvents and silicone fluids. PPGC and P3 could be induced into water dispersible nanoparticles using solvent displacement technique. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The miscibility of poly(3‐hydroxyvalerate) (PHV)/poly(p‐vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The blends are miscible as shown by the existence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of PHV in each blend. The interaction parameter was found to be −1.2 based on the analysis of melting point depression data using the Nishi–Wang equation. Hydrogen‐bonding interactions exist between the carbonyl groups of PHV and the hydroxyl groups of PVPh as evidenced by FTIR spectra. The crystallization of PHV is significantly hindered by the addition of PVPh. The addition of 50 wt % PVPh can totally prevent PHV from cold crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 383–388, 1999  相似文献   

4.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

5.
Poly(N‐vinyl pyrrolidone) (PVP) and poly (vinyl alcohol) (PVA) homopolymers and their blended samples with different compositions were prepared using cast technique and subjected to X‐ray diffraction (XRD) measurements, infrared (IR) spectroscopy, ultraviolet/visible spectroscopy, and thermogravimetric analysis (TGA). XRD patterns of homopolymers and their blended samples indicated that blending amorphous materials, such as PVP, with semicrystalline polymer, such as PVA, gives rise to an amorphous structure with two halo peaks at positions identical to those found in pure PVP. Identification of structure and assignments of the most evident IR ‐ absorption bands of PVP and PVA as well as their blends in the range 400–2000 cm?1 were studied. UV–vis spectra were used to study absorption spectra and estimate the values of absorption edge, Eg, and band tail, Ee, for all samples. Making use of Coats‐Redfern relation, thermogravimetric (TG) data allowed the calculation of the values of some thermodynamic parameters, such as activation energy E, entropy ΔS#, enthalpy ΔH, and free energy of activation ΔG# for different decomposition steps in the samples under investigation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Polymerizable mesogens were blended with poly(vinyl cinnamate) (PVCi) in order to improve the alignment properties of liquid crystals (LC) on the layer surface. Two types of cyanobiphenyl monomers, which have short (n=0) and long (n=11) spacers, were prepared, respectively. Polarized UV exposure at the elevated temperature increased the inclusion of the monomers into the network of the photo-products. Compositional studies showed that the short-spacer monomer improved homogeneous LC alignment and thermal stability, whereas the long-spacer monomer contributed to generate homeotropic LC alignment.  相似文献   

7.
Grafting of poly(ε‐caprolactone) (PCL) and poly(lactide) (PLA) chains on poly(vinyl alcohol) backbone (PVA degree of hydrolysis 99%) was investigated using MgH2 environmental catalyst and melt‐grown ring‐opening polymerization (ROP) of ε‐caprolactone (CL) and L ‐lactide (LA), that avoiding undesirable toxic catalyst and solvent. The ability of MgH2 as catalyst as well as yield of reaction were discussed according to various PVA/CL/MgH2 and PVA/LA/MgH2 ratio. PVA‐g‐PCL and PVA‐g‐PLA were characterized by 1H‐ and 13C‐NMR, DSC, SEC, IR. For graft copolymers easily soluble in tetrahydrofuran (THF) or chloroform, wettability and surface energy of cast film varied in relation with the length and number of hydrophobic chains. Aqueous solution of micelle‐like particles was realized by dissolution in THF then addition of water. Critical micelle concentration (CMC) decreased with hydrophobic chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Thermosensitive poly(vinyl alcohol)‐graft‐(maleic anhydride), PVA‐MA, and poly(vinyl alcohol)‐graft‐(N‐isopropylacrylamide maleic anhydride) (PVA‐MA‐NIPAAm) copolymers containing carboxyl groups were prepared using electron beam irradiation at dose 80 kGy. The swelling ratios of the cross‐linked gels were measured at various temperatures. The LCST values were measured using DSC technique. The temperature dependence of the swelling ratios of the cross‐linked copolymers and terpolymers were measured at different temperatures. The swelling ratios of copolymers increased with increasing temperature up to 25–38°C, then decreased. The swelling behavior of both copolymers and terpolymers was referred to formation of hydrogen bonds between amide group of NIPAAm moieties and carboxyl group in MA moieties and to hydrophobic interaction due to methyl groups of NIPAAm. The swelling behaviors of these gels were analyzed in buffer solution at various pH. Swelling ratios of all gels were relatively high and they showed reasonable sensitive to pH. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and poly(N‐isopropylacrylamide) were prepared by the sequential‐IPN method. The IPN hydrogels were analyzed for sorption behavior of water at 35°C and at a relative humidity of 95% using a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used for the quantitative determination of the amounts of freezing and nonfreezing water. Free water contents in the IPN hydrogel of IPN1, IPN2, and IPN3 were 45.8, 37.9 and 33.1% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2041–2045, 2003  相似文献   

10.
Poly(vinyl alcohol) was modified by UV radiation with dimethyl amino ethyl methacrylate (DMAEMA) monomer to get poly(dimethyl amino ethyl methacrylate) modified poly(vinyl alcohol) (PVADMAEMA) membrane. The PVADMAEMA membranes were characterized by Fourier transform infrared spectroscopy. The tensile strength and elongation of PVADMAEMA membranes were measured by Universal Testing Machine. The results of X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) showed that (1) the crystalline area in PVADMAEMA decreased with increasing the content of poly(dimethyl amino ethyl methacrylate) in the membrane. (2) Only one glass transition temperature (Tg) was found for the various PVADMAEMA membranes. It means that poly(dimethyl amino ethyl methacrylate) and PVA are compatible in PVADMAEMA membrane. (3)The Tg of the membrane is reduced with increasing the content of poly(dimethyl amino ethyl methacrylate) in the membrane. The water content on the PVADMAEMA membranes was determined. It was found that the water content on the PVADMAEMA membrane increased with increasing the content of poly(dimethyl amino ethyl methacrylate). The changes of properties enhanced the permeability of 5‐Fluorouracil (5‐Fu) through the PVADMAEMA membranes. A linear relationship between the permeability and the weight percent of poly(dimethyl amino ethyl methacrylate) in the PVADMAEMA membrane is found. It is expressed as P (cm/s) = (9.6 ± 0.4) × 10?5 + (8.8 ± 0.6) × 10?5 W x , where P is the permeability of 5‐Fu through the membrane and Wx is the weight percent of poly(dimethyl amino ethyl methacrylate) in the PVADMAEMA membrane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Poly(vinyl alcohol) (PVA) grafted with poly(lactide‐co‐glycolide) and cross‐linked as a material of increased hydrophobicity relative to PVA was produced. The properties were examined with respect to the mass loss, water uptake, hydrophilicity, and mechanical characteristics upon hydrolytical degradation. The hydrogels investigated display water uptake increasing with degradation time because of increasing hydrophilicity. The mass loss amounts up to 15% after eight weeks of degradation. The mechanical properties of the hydrogels are within the range of those of natural tissue, the E modulus is 18 MPa, or even 100–200 MPa, depending on the structure of material. The mechanical characteristic and their dependence degradation show the most recognizable correlation with the chemical structure. Studies of the topography of degraded samples (scanning electron microscopy) and IR measurements demonstrate the degradation to occur at slow rate due to the high degree of grafting. The mass loss is rather low and a bulk degradation mechanism takes place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A poly(vinyl cinnamate) (PVCin) composite was synthesized by a simple one step in situ polymerization of vinyl cinnamate with nickel oxide (NiO) nanoparticles. The structural, morphological and thermal properties of the nanocomposite were characterized using Fourier transform (FT)‐Raman, FT infrared (FTIR) and UV spectroscopies, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), differential scanning calorimetry and vibrating sample magnetometry (VSM) measurements. FT‐Raman, FTIR and UV spectroscopy results revealed the characteristic absorption and shifts of peaks of the polymer matrix, the shifts being attributed to the interaction of NiO nanoparticles with the polymer chains. The structural and morphological analysis using XRD, HRTEM and FESEM showed the uniform arrangement of nanoparticles within the polymer chains. VSM showed the ferromagnetic nature of the composite with an increasing saturation of magnetism. The glass transition temperature (Tg) of the composite was higher than that of pure PVCin and Tg of the composite increased with increasing nanoparticle content. The electrical resistivity of the nanocomposite was studied from AC and DC conductivity measurements. AC and dielectric properties were markedly enhanced in the whole range of frequency due to the presence of NiO nanoparticles. DC conductivity of the nanocomposite was much higher than that of PVCin and the conductivity of the nanocomposite increased with increasing content of NiO nanoparticles. © 2016 Society of Chemical Industry  相似文献   

13.
Semi‐interpenetrating networks (Semi‐IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly(vinyl alcohol) (PVA) by the sol‐gel process in this study. The characterization of the PDMS/PVA semi‐IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (? OH) and hydrophobic (Si? (CH3)2) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi‐IPNs prepared, which led to a maximum equilibrium water content of ~ 14 wt % without a loss in the ability to swell less polar solvents. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The effect of polymer–polymer compatibility on interdiffusion at polymer interfaces with dissimilar mobilities was investigated by attenuated total internal reflectance infrared spectroscopy. The polymer pair consisting of polystyrene and poly(vinyl methyl ether) was used to study interdiffusion at the interface of compatible polymers. The polymer pair consisting of polystyrene and poly(isobutyl vinyl ether) was used to study interdiffusion at the interface of incompatible polymers. Results indicate that the extent of interdiffusion is controlled by the polymer–polymer compatibility parameter, irrespectively of the differences in the mobility of the polymers.  相似文献   

15.
In this report we outline recent work on the evaluation of magnesium carbonate‐based flame retardants for polymers commonly used in halogen‐free flame retardant wire and cable applications: poly(ethylene‐co‐vinyl acetate) (EVA) and poly(ethylene‐co‐ethyl acrylate) (EEA). Natural magnesium carbonate (magnesite), synthetic magnesium carbonate (hydromagnesite), and hydromagnesite/huntite blends were combined with EVA or EEA and tested for flame retardancy effectiveness with the cone calorimeter. The flammability results showed that the effectiveness of these carbonates was polymer dependent, suggesting that polymer degradation chemistry played a role in the flammability reduction mechanism. Hydromagnesites were, in general, more effective in reducing flammability, being comparable in performance to magnesium hydroxide. Finally, we report some polymer–clay (organically treated montmorillonite and magadiite) + magnesium carbonate flame retardant results which showed that the nanocomposite yielded mixed results. Specifically, the polymer–clay nanocomposite samples did not always yield the greatest reductions in peak heat release rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Blends of two biodegradable semicrystalline polymers, poly(p‐dioxanone) (PPDO) and poly(vinyl alcohol) (PVA) were prepared with different compositions. The thermal stability, phase morphology and thermal behavior of the blends were studied by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). From the TGA data, it can be seen that the addition of PVA improves the thermal stability of PPDO. DSC analysis showed that the glass transition temperature (Tg) and the melting temperature (Tm) of PPDO in the blends were nearly constant and equal to the values for neat PPDO, thus suggesting that PPDO and PVA are immiscible. It was found from the SEM images that the blends were phase‐separated, which was consistent with the DSC results. Additionally, non‐isothermal crystallization under controlled cooling rates was explored, and the Ozawa theory was employed to describe the non‐isothermal crystallization kinetics. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
In a study of the surface morphology of commercial poly(vinyl acetate‐co‐vinyl alcohol) (ACA copolymer) with different percents of hydrolysis, different structures like fibrils, spherulites, micelles, vesicles, and spheroids were seen. The copolymer was crystallized by annealing at two different temperatures. The morphology of the polymer after crystallization and also without crystallization was studied. A decrease in the melting temperature just by heating to the melting temperature was observed, and for a detailed study, repetitive heating of the copolymer was carried out and changes in the mass and heat of fusion after every heating was recorded. The morphology of the copolymer after repetitive heating was studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1211–1218, 2002  相似文献   

18.
To improve the antifouling property of poly(vinyl chloride) (PVC) membranes, a series of poly(methacrylic acid) grafted PVC copolymers (PVC‐g‐PMAA) with different grafting degree were synthesized via one‐step atom transfer radical polymerization process utilizing the labile chlorines on PVC backbones followed by one‐step hydrolysis reaction. PVC/PVC‐g‐PMAA blend membranes with different grafting degree and copolymer content were prepared by nonsolvent induced phase separation method. The surface chemical composition, surface charge, membrane structures, wettability, permeability, separation performances and the fouling resistance of blend membranes were carefully investigated. The results indicated that the PMAA chains were segregated towards the surface and the membranes were endowed with negative charge. The hydrophilicity and permeability of the blend membranes were obviously improved. Furthermore, the antifouling ability especially at neutral or alkaline environments was also significantly increased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42745.  相似文献   

19.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

20.
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号