首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas holdup in a semi-batch operated slurry (pulp fibre suspension) bubble column was investigated for two pulp types (softwood and hardwood kraft pulps) over a range of suspension mass concentrations (Cm=0–9% by mass) and superficial gas velocities (Ug=0.0027–0.027 m/s). Three techniques were used: height difference between gassed and ungassed operation; pressure difference as a function column height; and electrical resistance tomography (ERT). Depending on the technique used the average, axial and radial holdup profiles could be determined. In the pulp suspensions, the ERT determined gas holdups correlated well with those determined using the differential height method. In water, the ERT determined gas holdups were significantly lower, but the agreement was significantly improved by increasing the background conductivity by adding 1 g/L salt to the water. This, however, reduced the overall gas holdup due to the effect of the electrolyte on bubble coalescence. Other differences between the three measurement techniques were attributed to limitations in the detection methods and the averaging procedures used to compare results.The presence of pulp fibres reduced gas-holdup at all gas flow rates and suspension concentrations studied and is attributed to increased bubble coalescence which increases bubble size and consequently bubble rise velocity through the suspension. Gas holdup (as determined by ERT) increased with column height. The radial gas profiles were non-uniform and more peaked than the corresponding water profiles. At low suspension concentrations this was attributed to asymmetric suspension recirculation within the column. As suspension concentration increased, channels formed in the suspension with the average void fraction leveling off to a plateau.  相似文献   

2.
The volumetric gas—liquid mass transfer coefficient (kLa) was measured for low‐ and medium‐consistency pulp suspensions using the cobalt‐catalyzed sulfite oxidation technique. Mass transfer rates were measured in a high‐shear mixer for a range of operating parameters, including the rotor speed (N = 10 to 50 rev/s), gas void fraction (Xg = 0.10 to 0.40) and fibre mass concentration (Cm = 0.0 to 0.10). kLa measurements were compared with the macroscale flow regime in the vessel (characterized using photographic techniques) and correlated with energy dissipation, gas void fraction and suspension mass concentration in the mixer. We found that gas‐liquid mass transfer was significantly reduced in pulp suspensions, even for low suspension concentrations. Part of this reduction was associated with dissolved components leached from the fibres into the liquid phase. This could account for reductions in kLa of up to 30% when compared with distilled water. The fibres further reduced kLa, with the magnitude of the decrease depending on the fibre mass concentration. Correlations were developed for kLa and compared with results available in the literature.  相似文献   

3.
The volumetric gas‐liquid mass transfer rate, kLa, was measured under batch conditions in a 0.28 m diameter laboratory‐scale retention column. Tests on water, and on unbleached kraft (UBK) pulp suspensions (mass fractions, Cm from 0.013 to 0.09) were made with air or nitrogen sparged through the column at superficial gas velocities between 0.0015 to 0.05 m/s. kLa varied with suspension mass concentration and superficial gas velocity, initially decreasing with increasing mass concentration, reaching a minimum between Cm = 0.03 and 0.06, and then increasing. The minimum in kLa coincided with a change in hydrodynamics within the column, from bubble column behaviour below Cm = 0.03 to porous solid behaviour above Cm = 0.06.  相似文献   

4.
Fibre type and mass fraction have significant effects on gas holdup in gas‐liquid‐fibre bubble columns. An experimental study is introduced to identify a parameter that simultaneously characterizes the fibre type and mass fraction effects on gas holdup in gas‐liquid‐fibre bubble columns. This parameter satisfies the following condition: when this parameter is constant, the gas holdup trend in different fibre suspensions is generally similar at most operating conditions. A method is proposed to identify a characterization parameter by combining the crowding factor and fibre number density. The identified parameter is Ic=1n(Nc0.8Nf0.2). This parameter can be used to model gas holdup in gas‐liquid‐fibre bubble columns and quantitatively compare the fibre effects in different fibre suspensions.  相似文献   

5.
The hydrodynamics of bubble columns with concentrated slurries of paraffin oil (density, ρL = 790 kg/m3; viscosity, μL = 0.0029 Pa·s; surface tension, σ = 0.028 N·m1) containing silica particles (mean particle diameter dp = 38 μm) has been studied in columns of three different diameters, 0.1, 0.19 and 0.38 m. With increasing particle concentration, the total gas hold‐up decreases significantly. This decrease is primarily caused by the destruction of the small bubble population. The hold‐up of large bubbles is practically independent of the slurry concentration. The measured gas hold‐up with the 36% v paraffin oil slurry shows remarkable agreement with the corresponding data obtained with Tellus oil (ρL = 862 kg/m3; μL = 0.075 Pa·s; σ = 0.028 N·m?1) as the liquid phase. Dynamic gas disengagement experiments confirm that the gas dispersion in Tellus oil also consists predominantly of large bubbles. The large bubble hold‐up is found to decrease significantly with increasing column diameter. A model is developed for estimation of the large bubble gas hold‐up by introduction of an wake‐acceleration factor into the Davies‐Taylor‐Collins relation (Collins, 1967), describing the influence of the column diameter on the rise velocity of an isolated spherical cap bubble.  相似文献   

6.
Gas hold‐up and bubble size distribution in a slurry bubble column (SBC) were measured using the advanced noninvasive ultrafast electron beam X‐ray tomography technique. Experiments have been performed in a cylindrical column (DT = 0.07 m) with air and water as the gas and liquid phase and spherical glass particles (dP = 100 μm) as solids. The effects of solid concentration (0 ≤ Cs ≤ 0.36) and superficial gas velocity (0.02 ≤ UG ≤ 0.05 m/s) on the flow structure, radial gas hold‐up profile and approximate bubble size distribution at different column heights in a SBC were studied. Bubble coalescence regime was observed with addition of solid particles; however, at higher solid concentrations, larger bubble slugs were found to break‐up. The approximate bubble size distribution and radial gas hold‐up was found to be dependent on UG and Cs. The average bubble diameter calculated from the approximate bubble size distribution was increasing with increase of UG. The average gas hold‐up was calculated as a function of UG and agrees satisfactorily with previously published findings. The average gas hold‐up was also predicted as a function of Cs and agrees well for low Cs and disagrees for high Cs with findings of previous literature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1709–1722, 2013  相似文献   

7.
Gas flow characteristics in opaque fibre suspensions have been captured on film using a stop‐motion X‐ray imaging technique called flash X‐ray radiography (FXR). Gas flows in a bubble column filled with various cellulose fibre suspensions from 0% (an air–water system) to 5% by mass have been observed. The gas flow regime changes from vortical to churn‐turbulent as the fibre concentration increases for a fixed superficial gas velocity. Two new gas flow regimes, identified as surge churn‐turbulent and discrete channel flow, have also been recorded at high fibre concentrations.  相似文献   

8.
Three bubble column diameters (D=10.2, 15.2, and 32.1 cm) are employed to study the scale-up effect on gas holdup in air-water and air-water-cellulose fiber (hardwood, softwood, and BCTMP) systems. The effect of column diameter depends on flow regime and fiber mass fraction. When , gas holdup decreases with increasing column diameter for the transitional and heterogeneous flow regime, and column diameter effects are negligible in the homogeneous flow regime. When , gas holdup is only affected by column diameter in the transitional flow regime for an air-water system and low fiber mass fraction suspensions (C?0.25%); column diameter effects disappear at medium fiber mass fractions (e.g., C=0.8%) but are significant at high fiber mass fractions (e.g., C=1.4%).  相似文献   

9.
We show that application of low‐frequency vibrations, in the 50–200 Hz range, to the liquid phase of an air‐water bubble column causes significantly smaller bubbles to be generated at the distributor plate. For bubble column operation in the homogeneous flow regime, measurements of the volumetric mass transfer coefficient using the oxygen absorption technique show that the increase in the kLa values ranges from 50–100 % depending on the flow rate. It is concluded that application of low‐frequency vibration has the potential of improving the performance of bubble columns.  相似文献   

10.
This paper is the second part of a continuing study on mass transfer in a reciprocating plate column. The first part dealt with kLa. The bubble size distribution, the Sauter mean diameter and the interfacial area are the subject of this paper. The bubble size increases slightly with gas flow rate and decreases with agitation intensity above a “critical” level. The interfacial area increases with increasing agitation and aeration intensities, while the liquid flow rate and coalescing properties of the liquid have no significant effect. The specific interfacial area is correlated in terms of the superficial gas velocity and the maximum power consumption. The correlations obtained for kLa and a were used to calculate kL. It was found that kL depends on the agitation intensity and the bubble size.  相似文献   

11.
Agitated pulp stock chests are the most widely used mixers in pulp and paper manufacture. Stock chests are used for a number of purposes, including attenuation of high‐frequency disturbances in pulp properties (such as mixture composition, fibre mass concentration, and suspension freeness) and are designed using semi‐empirical rules based largely on previous experience. Tests made on both laboratory and industrial‐scale pulp chests indicate that they are subject to non‐ideal flows, including channelling and creation of dead zones. In the present work, a commercial computational fluid dynamic (CFD) software (Fluent) is used to model two industrial pulp stock chests. The first chest is rectangular, agitated using a single side‐entering impeller, and feeds a mixture of chemical pulps at 3.5% mass concentration (Cm) to a papermachine. The second chest has rectangular geometry, with a mid‐feather wall used to direct suspension flow through a U‐shaped trajectory past four side‐entering impellers. This chest is used to remove latency from a Cm = 3.5% thermomechanical pulp suspension ahead of stock screening. For CFD computations, pulp rheology was described using a modified Hershel–Buckley model. Steady‐state simulations were made corresponding to process conditions during mill tests. The calculated steady‐state flows were then used to determine the dynamic response of the virtual chests and then compared with experimental measurements and found to agree reasonably well. The computed flow fields provided insight into mixing processes occurring within the chests, showing cavern formation around the impellers (which reduced the agitated volume available for mixing). Mass‐less particle tracking, using the steady‐state flow field, gave insight into the stagnant regions and bypassing zones created in the vessels. This paper discusses difficulties encountered in characterising the mixing (both experimentally and computationally) and the limitations of the industrial data.  相似文献   

12.
大孔径高气速单孔气泡形成   总被引:2,自引:0,他引:2  
沈雪松  沈春银  李光  戴干策 《化工学报》2008,59(9):2220-2225
在内径为190mm的鼓泡塔内,研究了空气-去离子水系统在大孔径高气速条件下的单孔气泡形成。考察了五个不同的孔径,分别为4、8、10、15及21mm,孔口气速范围为0.8~154.8m·s-1。以CCD摄像记录气泡的形状及尺寸,根据气泡长径比的变化,得到气泡初始形态转变时的临界孔口气速:当孔口气速低于20m·s-1时,孔口气泡近似于球形,长径比小于1.1;当孔口气速大于50m·s-1时,气泡呈现椭球形,长径比大于1.5。并对气泡尺寸与孔径及孔口气速进行关联,所得关联式对孔径大于3mm、孔口气速在10~80m·s-1范围内所形成的气泡尺寸预测效果较好。  相似文献   

13.
The airlift reactor is one of the most commonly used gas–liquid two-phase reactors in chemical and biological processes. The objective of this study is to generate different-sized bubbles in an internal loop airlift reactor and characterize the behaviours of the bubbly flows. The bubble size, gas holdup, liquid circulation velocity, and the volumetric mass transfer coefficient of gas–liquid two-phase co-current flow in an internal loop airlift reactor equipped with a ceramic membrane module (CMM) and a perforated-plate distributor (PPD) are measured. Experimental results show that CMM can generate small bubbles with Sauter mean diameter d32 less than 2.5 mm. As the liquid inlet velocity increases, the bubble size decreases and the gas holdup increases. In contrast, PPD can generate large bubbles with 4 mm < d32 < 10 mm. The bubble size and liquid circulation velocity increase as the superficial gas velocity increases. Multiscale bubbles with 0.5 mm < d32 < 10 mm can be generated by the CMM and PPD together. The volumetric mass transfer coefficient kLa of the multiscale bubbles is 0.033–0.062 s−1, while that of small bubbles is 0.011–0.057 s−1. Under the same flow rate of oxygen, the kLa of the multiscale bubbles increases by up to 160% in comparison to that of the small bubbles. Finally, empirical correlations for kLa are obtained.  相似文献   

14.
鼓泡塔反应器气液两相流CFD数值模拟   总被引:7,自引:3,他引:4       下载免费PDF全文
李光  杨晓钢  戴干策 《化工学报》2008,59(8):1958-1965
对圆柱形鼓泡塔反应器内的气液两相流动进行了三维瞬态数值模拟,模拟的表观气速范围为0.02~0.30 m&#8226;s-1; 模拟采用了双流体模型,并耦合了气泡界面密度单方程模型预测气泡尺寸,该模型考虑了气泡聚并与破碎对气泡尺寸的影响。液相湍流采用考虑气相影响的修正k-ε模型,两相间的动量传输仅考虑曳力作用。模拟获得了轴向气/液相速度分布、气含率分布、湍流动能分布以及气泡表面面积密度等,对部分模拟结果与实验值进行了定量比较,结果表明模拟结果与实验结果吻合较好。  相似文献   

15.
Computational Fluid Dynamics (CFD) is used to compare the hydrodynamics and mass transfer of an internal airlift reactor with that of a bubble column reactor, operating with an air/water system in the homogeneous bubble flow regime. The liquid circulation velocities are significantly higher in the airlift configuration than in bubble columns, leading to significantly lower gas holdups. Within the riser of the airlift, the gas and liquid phases are virtually in plug flow, whereas in bubble columns the gas and liquid phases follow parabolic velocity distributions. When compared at the same superficial gas velocity, the volumetric mass transfer coefficient, kLa, for an airlift is significantly lower than that for a bubble column. However, when the results are compared at the same values of gas holdup, the values of kLa are practically identical.  相似文献   

16.
H. Jin  D. Liu  S. Yang  G. He  Z. Guo  Z. Tong 《化学工程与技术》2004,27(12):1267-1272
The volumetric gas‐liquid mass transfer coefficient, kLα, for oxygen was studied by using the dynamic method in slurry bubble column reactors with high temperature and high pressure. The effects of temperature, pressure, superficial gas velocity and solids concentration on the mass transfer coefficient are systemically discussed. Experimental results show that the gas‐liquid mass transfer coefficient increases with the increase in pressure, temperature, and superficial gas velocity, and decreases with the increase in solids concentration. Moreover, kLα values in a large bubble column are slightly higher than those in a small one at certain operating conditions. According to the analysis of experimental data, an empirical correlation is obtained to calculate the values of the oxygen volumetric mass transfer coefficient for a water‐quartz sand system in two bubble columns with different diameter at high temperature and high pressure.  相似文献   

17.
The rate of mass transfer from the gas to water phases was measured in a commercial, high-shear, laboratory mixer under conditions typical of medium-consistency bleaching. The gas—liquid volumetric mass transfer coefficient, kLa, was measured using the cobalt-catalyzed sulfite oxidation technique. Suspensions of fully-bleached kraft pulp and synthetic nylon fibres were used, with mass transfer rates measured over a range of suspension compositions and mixer operating conditions. In the presence of pulp fibre, mass transfer rates were significantly reduced over the comparable water cases. The same dramatic decrease in mass transfer was not observed for the nylon suspensions, although kLa did decrease with increasing suspension concentration. Comparison of this data with that obtained from ozone bleaching experiments confirmed that at medium-consistency gas—liquid mass transfer controls ozone bleaching.  相似文献   

18.
This study was designed to determine the effect of gas expansion on the velocity of Taylor bubbles rising individually in a vertical column of water. This experimental study was conducted at atmospheric pressure or under vacuum (33.3 and ) using three different acrylic columns with internal diameters of 0.022, 0.032, and 0.052 m, and more than 4.0 m high. A non-intrusive optical method was used to measure velocity and length of Taylor bubbles at five different locations along the columns. The operating conditions used correspond to inertial controlled regime.In experiments performed under vacuum, there is considerable gas expansion during the rise of Taylor bubbles, particularly when they approach the liquid free surface where the pressure drop (due to the hydrostatic pressure) is of the order of magnitude of the absolute pressure. The liquid ahead of the bubble is displaced upward by an amount proportional to the gas expansion resulting in increased bubble velocity. The calculated Reynolds number suggests a laminar regime in the liquid ahead of the bubble. However, the experimentally determined velocity coefficient C for each column was much smaller than 2, which would be expected for laminar flow. The value of C obtained ranges from 1.13±0.09, for the narrowest column, to 1.40±0.24, for the widest column. This suggests that a fully developed laminar flow in the liquid ahead of the bubble is never achieved due to continuous bubble expansion at a variable rate, regardless of column height.The velocity coefficient C can be used to calculate the contribution of liquid motion to bubble velocity. Subtracting this contribution from the measured bubble velocity defines a constant value which is nearly identical to the bubble rise velocity measured in the same column operated as a constant volume system (two ends closed) where gas expansion is absent.  相似文献   

19.
To determine bubble rising and descending velocity simultaneously, a BVW‐2 four‐channel conductivity probe bubble parameters apparatus and its analysis are used in gas‐liquid and gas‐liquid‐solid bubble columns. The column is 100 mm in internal diameter and 1500 mm in height. The solid particles used are glass beads with an average diameter of 17.82 μm, representing typical particle size for catalytic slurry reactors. The effects of superficial gas velocity (1.0 cm/s ≤ Ug 6.4 cm/s), solid holdup (0 % ≤ ?s 30 %), and radial location (r/R = 0, 0.4, and 0.7) on bubble velocity distributions are determined. It is found that increasing Ug can increase the velocity of bubbles but do not exert much influence on bubble velocity distribution. Solid holdup mainly affects the distribution of bubble velocity while the radial direction affects bubble velocity distribution only slightly. The ratio of descending bubbles to rising bubbles increases from the bubble column center to the wall. It can be proved experimentally that large bubbles do not always rise faster than small bubbles at higher Ug (for example 6.4 cm/s).  相似文献   

20.
A comprehensive quantitative study on the effect of liquid viscosity (1 ≤ µL ≤ 1149 mPa‐s) on the local flow phenomena of the gas phase in a small diameter bubble column is performed using ultrafast electron beam X‐ray tomography. The internal dynamic flow structure and the bubble size distribution shows a dual role of the liquid viscosity on the hydrodynamics. Further, the effect of solid concentration (Cs = 0.05, 0.20) on the local flow behavior of the gas phase is studied for the pseudo slurry viscosities similar to the liquid viscosities of the gas–liquid systems. The effects of liquid and pseudo slurry viscosities on flow structure, bubble size distribution, and gas phase distribution are compared. The bubble coalescence is significantly enhanced with the addition of particles as compared to the system without particles for apparently same viscosity. The superficial gas velocity at which transition from homogeneous bubbly to slug flow regime occurs is initiated by the addition of particles as compared to the particle free system for apparently same viscosity. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3079–3090, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号