首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photopolymerization kinetics and viscosity behavior of 11 2,2‐bis[4‐(2‐hydroxymethacryloxypropoxy)phenyl]propane/triethylene glycol dimethacrylate mixtures were investigated. The viscosity was studied at six temperatures (20–70°C), and the activation energies for the viscosity were determined. The excess logarithm viscosities were calculated and found to be negative over the whole composition and temperature ranges; they were fitted to the Redlish–Kister polynomial equation. The kinetic analysis of the photopolymerization was carried out at three polymerization temperatures (20, 40, and 60°C). The results proved the existence of the most reactive composition (reaching the highest value of the maximum polymerization rate), but the ratio of the monomers in this composition, close to equimolar, showed a tendency to change with the polymerization temperature. The viscosities of the most reactive compositions lay in the range of about 0.1–1.2 Pa s, which was narrow in comparison with the range of viscosities of all the compositions used in the kinetic studies (from 3 × 10?3 to 1.5 × 103 Pa s). The activation energies for the polymerization rates were calculated and correlated with the viscosity changes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Two low‐viscosity monomers, 2‐(acryloyloxy)ethyl piperidine‐1‐carboxylate (AEPC II) and 2‐(acryloyloxy)ethyl morpholone‐4‐carboxylate (AEMC), were synthesized with a non‐isocyanate route. The photopolymerization kinetics was monitored by real‐time infrared spectroscopy with a horizontal sample holder. The results indicated that AEPC II and AEMC had high ultraviolet curing rates and final double‐bond conversions, which could reach 90 and 95%, respectively. The glass‐transition temperatures of AEPC II/urethane acrylate resin (1/4 w/w), AEMC/urethane acrylate resin (1/4 w/w), and isobornyl acrylate/urethane acrylate resin (1/4 w/w) mixtures were 37.5, 45.6, and 57°C, respectively. The crosslink density of the AEMC/urethane acrylate resin (1/4 w/w) mixture was lower than that of the isobornyl acrylate/urethane acrylate resin (1/4 w/w) mixture. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Low‐volume‐shrinkage poly(triethylene glycol dimethacrylate) was made by photopolymerization at a low temperature. The final double‐bond conversion and dynamic mechanical analysis indicated the optimal cure temperature to be ?40°C, at which a cured sample had less volume shrinkage than samples cured at room temperature but similar mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1126–1130, 2007  相似文献   

4.
New types of radical photoinitiators, based on azido and diazido structures, were compared to the reactivity of pure xanthone by using a photocalorimetry technique. Our results show that these photoinitiators are good candidates for radical polymerization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1096–1101, 2003  相似文献   

5.
A series of ultraviolet‐curable nanocomposite coatings were prepared with condensed nanosilica particles and with benzophenone/n‐methyl diethanolamine as the initiator. The nanosilica that incorporated into the nanocomposites did not aggregate even when the nanosilica concentration was as high as 22.5%. Adding nanosilica increased the curing speed, thermal stability, and ultraviolet shielding properties of the nanocomposites without reducing the transparency of the ultraviolet‐curing coatings. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 912–918, 2005  相似文献   

6.
Results of kinetic studies of two‐component photoinitiator systems used in the visible‐light photoinduced polymerization of 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate are presented. Nine different styrylquinolinum dyes coupled with n‐butyltriphenylborate as a coinitiator have been used as photoinitiating systems. Reactive radicals that initiate the polymerization are formed by the well‐known mechanism of photoinduced electron transfer between dye cations acting as electron acceptors and borate anions acting as electron donors. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
This article introduces asymmetric cyanine dyes employed as visible‐light photoinitiators of vinyl monomer polymerization and as fluorescence probes monitoring the progress of polymerization. A degree of polymer cure from the measurement of the changes in the probe emission intensity and position shifts during the thermally initiated polymerization of monoacrylate was obtained. A distinct increase in the intensity of the probe fluorescence was observed during polymerization when the degree of monomer conversion was gradually increasing. This effect was accompanied by a blue‐shift of the probe emission maxima. The second part of this work is focused on the possibility of an application of the tested dyes, in combination with borate anions, as photoinitiating systems. The kinetics of polymerization of trimethylolpropane triacrylate, with cyanine borates as photoinitiators, was studied by a microcalorimetric method. Asymmetric cyanine borates were found to be effective photoinitiators, and both the initiator and coinitiator concentration as well as the light intensity strongly affected the progress of photopolymerization, leading, for example, to an increase in the polymerization rate. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 207–217, 2006  相似文献   

8.
In this article, we report on the formation of optically transparent photopolymer films from hexanediol diacrylate (HDDA) by inkjet printing, where droplets of monomer approximately 5 μm in diameter were deposited onto a surface. The films were cured by irradiation with a UV‐light‐emitting‐diode light source. It was found that the inkjet‐printed HDDA films picked up a considerable amount of absorbed O2 during printing. Exposure to increasing amounts of O2 during photocuring severely restricted both the degree of conversion and the UV dose required for gelation in proportion to the O2 concentration. Viscoelastic property data indicated that exposure to reduced oxygen concentrations during thermal postcuring (dark reaction) resulted in linear trends of increasing modulus above the glass‐transition temperature (Tg) and increasing Tg itself. Thus, the final crosslink density was greater in fully cured samples that were exposed to atmospheres with increasing inert gas concentrations. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
New high‐heat‐resistant photoreactive polymers with cinnamate groups were synthesized by the reaction of cinnamic acid (CA) and epoxy resins. Their photocure properties were investigated with Fourier transform infrared spectroscopy, UV–visible spectroscopy, and thermogravimetric analysis (TGA). Their photocure reaction rates and the extent of reaction conversion increased with the intensity of UV irradiation. To investigate their photocure reaction kinetics, their reaction conversion rates were plotted against reaction conversion so that their photocure reactions could be analyzed in terms of an nth‐order kinetics reaction equation. The YX4000H–CA photoreactive polymer with a biphenyl moiety, which was expected to have strong molecular interactions, showed a lower reaction conversion rate and reaction constant, and the highest reaction conversion rate and reaction constant was observed in XP2030–CA with an optimum cure reaction space and a reduction of molecular interactions compared with the other photoreactive polymers. Thermal stability was studied by observation of the changes in the transmittance of the photocured polymer films upon heating and by measurement of the weight loss with temperature with TGA. These photoreactive polymers showed good thermal properties, with almost no transmittance change in the visible range even after they were heated at 250°C for 1 h, and they exhibited little weight loss up to about 250°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The photoinitiation ability of photoredox pairs composed of a hemicyanine dye cation and different borate anions for the radical polymerization of 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate was investigated. In such a system, the excited dye chromophore is reduced by different tetraorganylborate anions. Upon irradiation at 488 nm, reductive carbon–boron bond cleavage occurs, producing reactive radicals, which start the chain reaction. The efficiency of bond‐breaking processes was found to be dependent on the nature of both the acceptors and the donors. The experimental results show that the photoinitiating ability of the tested photoredox pairs were controlled by both the driving force of the electron‐transfer process between the electron donor and the electron acceptor and the reactivity of the free radical that resulted from the secondary reactions occurring after the photoinduced electron‐transfer process. Using the nanosecond flash photolysis method, we studied the spectral and kinetic characteristics of the triplet state of cyanine dye and determined the rate constants of the triplet quenching by phenyltrialkylborate salts. The results obtained show that the tetramethylammonium phenyl‐tri‐n‐butylborate (TB7) has a faster electron‐transfer rate than the tetramethylammonium n‐butyltriphenylborate (TB2) salt, which bore only one butyl group attached to the boron. The relative initiator efficiency of the triphenylbutylborate salts, as compared to the corresponding phenyltrialkylborate salts with a common chromophore, was determined. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
On the basis of the competitive reactions of intermediate poly(styrene‐coN‐phenyl maleamic acid) (SNPMA) to produce either poly(styrene‐co‐maleic anhydride) (SMA) or poly(styrene‐coN‐phenyl maleimide) (SNPMI), the imidization kinetics of SMA with aniline in the molten state were investigated by a novel approach. The volatiles emitted during the reaction of SNPMA were monitored online with both thermogravimetric analysis and Fourier transform infrared (FTIR) integrated technology. The experimental results directly and definitely indicate that the amidization reaction from SMA to SNPMA in the melt was reversible. Moreover, the kinetic parameters of the competitive reactions of SNPMA in the melt to produce either SMA or SNPMI were determined by FTIR analysis and then compared with those parameters in solution that were obtained in our previous study. It was also implied that the forward ring‐opening reaction of SMA in the melt was nearly instantaneous and that the rates of the competitive reactions of SNPMA to produce either SMA or SNPMI were crucial for the total imidization of SMA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
13.
Hybrid organic‐inorganic materials based on the sol‐gel synthesis of an organically modified silicon alkoxide have demonstrated their great potential for optical applications. They offer a high versatility in terms of chemical, physical properties and macroscopic shape molding of the final component. Recently, a photolithographic process allowed the generation of relief optical elements without requiring a wet treatment to reveal the latent image. It enabled a low cost, simple and quick method for the fabrication of integrated optical components. The aim of the present paper is to give new insights into the mechanisms of surface self‐corrugation leading to gratings generation in hybrid sol‐gel films. A study of the relief formation was led by giving particular attention to the kinetic aspects of the polymerization of the organic component. The control of the C?C double bonds conversion of methacrylate functionalized alkoxides in case of photopolymerization is therefore an essential issue to tailor material properties. The study also focuses on the influence of physico‐chemical parameters that govern the relief generation and underlines the particular role of temperature. Kinetics of surface corrugation point out the importance of strain relaxation, mass‐transfer by flowing and organic network formation during the photolithographic process. Some illustrations of the generated diffraction gratings are given.

Interferogram of the diffraction grating obtained after 120 s exposure through a chromium mask.  相似文献   


14.
Silicone materials are widely used in many fields such as electrical or food industries and their consumption is constantly growing. They are generally cured by vulcanization reaction for long time at high temperatures which requires high energy consumption. The possibility to achieve the polymerization of silicone rubbers by UV‐activation promotes the reduction of both time and temperature leading to an impressive energy saving. Indeed, this process is more than 30 times faster than the thermal one. Moreover, the properties of the two resulting materials are comparable, indicating that the low time of UV‐activated hydrosilation reaction is suitable for the formation of crosslinked silicone polymers.

  相似文献   


15.
Carboxylated styrene–butadiene rubber latexes were prepared through the emulsifier‐free emulsion copolymerization of styrene and butadiene with various carboxylic acid monomers. The effects of various carboxylic acid monomers on the particle formation process were investigated. The type of carboxylic acid monomer strongly affected the particle nucleation. The number of particles and thus the polymerization rate increased with the increasing hydrophobicity of the carboxylic acid monomers. There was a significant difference in the polymerization rate per particle. The results showed that particle nucleation and growth were dependent on the hydrophilic nature of the carboxylic acid monomers. The average particle diameter of the carboxylated styrene–butadiene rubber latexes in the dry state was obtained through some calculations using direct measurements of the average particle diameter in the monomer‐swollen state by a dynamic light scattering technique. Several parameters, such as the polymerization rate, number of latex particles per unit of volume of the aqueous phase, and polymerization rate per particle, were calculated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
The effects of the Al/Ti ratio and external donor (ED) on the catalytic activity and kinetics of propene polymerization catalyzed by a spherical Ziegler‐Natta (Z‐N) catalyst were investigated. The preparation conditions of the catalyst play an important role in the polymerization kinetics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3737–3740, 2003  相似文献   

17.
Studies of the photoinitiated cationic ring‐opening polymerizations of epoxide and oxetane monomers were conducted using optical pyrometry. Using this technique, the temperature of these photopolymerizations was monitored as a function of time. The effects of photoinitiator type and monomer structure on the rates of photopolymerization were investigated. Optical pyrometry was also used to investigate the acceleration of the photopolymerizations of various epoxide and oxetane monomers. Certain mixtures of monomers displayed synergistic effects that markedly increased their overall rates of polymerizations. In all cases in which acceleration of polymerization rate was noted, it could be attributed to an increase in the speed of ring opening of the initially formed protonated cyclic ether. The effects of relative humidity on the rate of cationic ring‐opening photopolymerizations of cyclic ether monomers were also investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3303–3319, 2004  相似文献   

18.
The free‐radical polymerization of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) in aqueous media and in the presence of potassium persulfate (KPS) as a thermal initiator was studied. The 1H‐NMR method was applied to record the reaction data in online gain. The effects of the monomer and initiator concentrations and also the reaction temperature were studied. The order of reaction with respect to the monomer was much greater than unity (1.94). None of the three theories describing an order of reaction higher than unity could predict the AMPS polymerization mechanism in this study. So, a new mechanism is presented. It is suggested that initiation took place through the formation of a complex between the initiator and monomer, and termination occurred not only by a bimolecular reaction but also by a monomolecular reaction. The order with respect to KPS was 0.49; this was consistent with classical kinetic theory. The determined activation energy at the overall rate of reaction was 92.7 kJ mol?1 K?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A series of free‐radical polymerization initiation systems, based on xanthene dyes as the absorbing chromophores [Rose bengal derivative, 3‐(3‐methylbutoxy)‐5,7‐diiodo‐6‐fluorone and 3‐acetoxy‐2,4,5,7‐tetraiodo‐6‐fluorone] and sulfur‐containing amino acids as the electron donors, were investigated. The photoredox pair xanthene dye/sulfur‐containing amino acid was effectively used for photoinitiation of free‐radical polymerization of the mixture composed of poly(ethylene glycol)diacrylate–1% NH4OH (3 : 1). The highest initiating efficiencies were observed for the system composed of methionine derivatives as the electron donor. The mechanism of photoinduced electron transfer between sulfur‐containing amino acids and triplet state of xanthene dye was investigated using laser‐flash and steady‐state photolysis techniques. Based on photochemistry of xanthene dyes, photochemistry of sulfur‐containing amino acids, and obtained results, the mechanism describing the major processes occurring during the photoinitiated polymerization by a photoinduced intermolecular electron‐transfer process was postulated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 358–365, 2005  相似文献   

20.
The stabilization reactions of a high‐molar‐mass poly(acrylonitrile‐co‐itaconic acid) precursor in air at 200, 220, and 240°C were studied with Fourier transform infrared. Principally, the cyclization of nitrile groups leading to the ladder structures of tetrahydropyridine occurred. Evidence for oxidative reactions causing the conversion of the C? C structure to C?C and generating groups such as ? OH and C?O was also obtained. As the temperature of stabilization was increased, the rate of the reaction increased without causing great changes in the Fourier transform infrared spectral patterns. The maximum nitrile conversion achievable was limited by the temperature of stabilization. Although the reaction stagnated at 40 and 80% at 200 and 220°C, it was practically complete in about an hour at 240°C. Higher temperatures also favored the formation of extended conjugated structures. Wide‐angle X‐ray diffraction studies of the polymer stabilized at 300 and 400°C in argon confirmed that the aromatization index value and the crystallinity of the polymer increased proportionally to the temperature of pyrolysis. An analysis of the wide‐angle X‐ray diffraction pattern and the elemental composition of the stabilized polymer implied the formation of the tetrahydropyridine structure at 400°C. The higher pyrolysis temperature favored the formation of the lattice constituted by this group. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3055–3062, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号