首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this investigation, attempts are made to modify a high‐performance polymer such as polybenzimidazole (PBI) (service temperature ranges from ?260°C to +400°C) through high‐energy radiation and low‐pressure plasma to prepare composite with the same polymer. The PBI composites are prepared using an ultrahigh temperature resistant epoxy adhesive to join the two polymer sheets. The service temperature of this adhesive ranges from ?260°C to +370°C, and in addition, this adhesive has excellent resistance to most acids, alkalis, solvents, corrosive agents, radiation, and fire, making it extremely useful for aerospace and space applications. Prior to preparing the composite, the surface of the PBI is ultrasonically cleaned by acetone followed by its modification through high‐energy radiation for 6 h in the pool of a SLOWPOKE‐2 (safe low power critical experiment) nuclear reactor, which produces a mixed field of thermal and epithermal neutrons, energetic electrons, and protons, and γ‐rays, with a dose rate of 37 kGy/h and low‐pressure plasma through 13.56 MHz RF glow discharge for 120 s at 100 W of power using nitrogen as process gas, to essentially increase the surface energy of the polymer, leading to substantial improvement of its adhesion characteristics. Prior to joining, the polymer surfaces are characterized by estimating surface energy and electron spectroscopy for chemical analysis (ESCA). To determine the joint strength, tensile lap shear tests are performed according to ASTM D 5868–95 standard. Another set of experiments is carried out by exposing the low‐pressure plasma‐modified polymer joint under the SLOWPOKE‐2 nuclear for 6 h. Considerable increase in the joint strength is observed, when the polymer surface is modified by either high‐energy radiation or low‐pressure plasma. There is further significant increase in joint strength, when the polymer surface is first modified by low‐pressure plasma followed by exposing the joint under high‐energy radiation. To simulate with spatial conditions, the joints are exposed to cryogenic (?196°C) and high temperatures (+300°C) for 100 h. Then, tensile lap shear tests are carried out to determine the effects of these environments on the joint strength. It is observed that when these polymeric joints are exposed to these climatic conditions, the joints could retain their strength of about 95% of that of joints tested under ambient conditions. Finally, to understand the behavior of ultrahigh temperature resistant epoxy adhesive bonding of PBI, the fractured surfaces of the joints are examined by scanning electron microscope. It is observed that there is considerable interfacial failure in the case of unmodified polymer‐to‐polymer joint whereas surface‐modified polymer essentially fails cohesively within the adhesive. Therefore, this high‐performance polymer composite could be highly useful for structural applications in space and aerospace. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1959–1967, 2006  相似文献   

2.
In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contact angle of de-ionized water decreases with the grit blast treatment time. Optical microscopy and scanning electron microscopic (SEM) analysis of untreated and atmospheric plasma treated titanium are carried out to examine the surface characteristics. A substantial improvement in the surface energy of titanium is observed after the atmospheric pressure plasma treatment. The surface energy increases with increasing exposure time of atmospheric pressure plasma. The optimized time of plasma treatment suggested in this investigation results in maximum adhesive bond strength of the titanium. Unmodified and surface modified titanium sheets by atmospheric pressure plasma were adhesively bonded by high temperature resistant polyimide adhesive. The glass transition temperature of this adhesive is 310 °C and these adhesively bonded joints were cured at high temperature. A substantial improvement in adhesive bond strength was observed after atmospheric pressure plasma treatment.  相似文献   

3.
The effect of air plasma treatment on wetting and energy properties, surface composition and morphology of polyether ether ketone (PEEK) was investigated. The influence of the storage time on the surface properties of plasma‐treated polymer plate was also examined. The properties were determined by advancing and receding contact angle measurements, Fourier transform infrared spectroscopy supported by theoretical spectrum modelling, X‐ray photoelectron spectroscopy and optical profilometry. Three theoretical approaches were used in the determination of the apparent surface free energy of the untreated and plasma‐treated PEEK samples from the measured contact angles of probe liquids (water, formamide, diiodomethane): the contact angle hysteresis method, the Owens and Wendt approach and the Lifsthitz ? van der Waals acid–base approach. It was found that air plasma treatment of PEEK causes significant chemical and morphological changes of the polymer surface, which are reflected in the decrease of contact angles from 83.4° to 11.7° for water after 180 s plasma treatment. This is due to the formation of polar functional groups resulting in the increase of the surface hydrophilicity. After plasma treatment the apolar component of the surface free energy practically does not change, while the polar component increases significantly, especially for plates treated for 180 s, from 0 to 19.6 mJ m?2. In addition, the modified PEEK surface is not stable during storage and it acquires more hydrophobic character. © 2016 Society of Chemical Industry  相似文献   

4.
This investigation highlights the rationale of adhesive bonding of atmospheric pressure plasma treated high temperature resistant polymeric sheet such as polyimide sheet (Meldin 7001), with titanium sheets. The surface of polyimide (PI) sheet was treated with atmospheric pressure plasma for different exposure times. The surface energy was found to increase with increase in exposure time. However, longer exposure time of plasma, results in deterioration of the surface layer of PI resulting in degradation and embrittlement.Contact angle measurements with sessile drop technique were carried out for estimation of surface energy. SEM (EDS) and AFM analyses of treated and untreated specimens were carried out to examine the surface characteristics and understanding morphological changes following surface treatment. Untreated samples and atmospheric pressure plasma treated samples of polyimide Meldin 7001 sheet were bonded together as well as with titanium substrates to form overlap joints. Single lap shear tensile testing of these adhesively bonded joints was performed to measure bond strength and to investigate the effect of surface treatment on adhesive bond strength. An optimized plasma treatment time results in maximum adhesive bond strength and consequently, this technology is highly acceptable for aviation and space applications.  相似文献   

5.
To improve their adhesion properties, ultra high modulus polyethylene (UHMPE) fibers were treated by an atmospheric pressure helium plasma jet (APPJ), which was operated at radio frequency (13.56 MHz). The surface properties of the fibers were investigated by X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and contact angle measurement. The surface dyeability improvement after plasma treatments was investigated using laser scanning confocal microscopy (LSCM). The adhesion strengths of the fibers with epoxy were evaluated by microbond tests. In addition, the influence of operational parameters of the plasma treatment including power input and treatment temperature was studied. XPS analysis showed a significant increase in the surface oxygen content. LSCM results showed that the plasma treatments greatly increased fluorescence dye concentrations on the surface and higher diffusion rate to the fiber center. The tensile strength of UHMPE fiber either remained unchanged or decreased by 10–13.6% after plasma treatment. The contact angle exhibited a characteristic increase in wettability, due to the polar groups introduced by plasma treatment. The microbond test showed that the interfacial shear strengths (IFSS) increase significantly (57–139%) after plasma treatment for all groups and the optimum activation is obtained at 100°C and 5 W power input. SEM analysis showed roughened surfaces after the plasma treatments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
A low-temperature, atmospheric pressure helium and oxygen plasma has been used for the surface preparation of aluminum 2024 prior to adhesive bonding. The plasma converted the aluminum from a water contact angle (WCA) of 79° to down to 38° within 5 s of exposure, while sanding reduced the WCA to only 51°. Characterization of the aluminum surface by X-ray photoelectron spectroscopy revealed a decrease in carbon contamination from 70 to 36% and an increase in the oxygen content from 22 to 50% following plasma treatment. Similar trends were observed for sanded surfaces. Lap shear results demonstrated bond strengths of 30?±?2?MPa for the sanded aluminum vs. 33?±?1?MPa for plasma-treated aluminum, where sol–gel and primer coatings were added to the surface preparation. Following seven days of aging, wedge crack extension tests revealed cohesive failure percentages of 86, 92, and 96% for sanded, plasma-treated, and sanded/plasma-treated aluminum, respectively. These results indicate that atmospheric pressure plasmas are an attractive alternative to acid treatment or abrasion techniques for surface preparation prior to bonding.  相似文献   

7.
This work is focused on obtaining and characterizing thin films of a certain thermosensitive polymer, i.e., poly(N‐isopropylacrylamide). To obtain such polymers dielectric barrier discharge plasma working at atmospheric pressure in plan–plan geometry was used. The plasma parameters were monitored during polymerization reaction by its electrical and optical signals. The obtained films were analyzed by different techniques such as X‐photoelectron spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, contact angle, impedance spectroscopy measurements, and light interferometry for thickness measurements. Chemical analyses of obtained films showed that they sort well with the polymers obtained by other methods in literature. It has been proved that plasma polymerized films have a superhydrophilic character at room temperature, the measured contact angle being around 13°, the lower critical solution temperature was also identified at about 30–31°C. The films' thickness for a 10‐min duration deposition was 400 nm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Polyethylene terephthalate fibers cords were modified with argon, oxygen, and successive argon/oxygen cold plasmas as a function of treatment time. Plasma treated cords were coated with resorcinol formaldehyde latex, then tested as rubber reinforcing materials. The peel strength was discussed with respect to the polar component of the surface energy and the etching of the fibers. An increased adhesion of ∼ 280% was obtained with 30 min argon plasma followed by 30 min oxygen plasma, at 75 W power and 40 Pa pressure without altering the traction strength of the fibers cords. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2321–2330, 1998  相似文献   

9.
This investigation highlights the adhesion performance of carbon fiber‐ and glass fiber‐reinforced polyphenylene sulfide when joined by high‐performance neat epoxy adhesive and nanofilled epoxy adhesive. A significant increase in the surface energy of these materials is observed after the surface modification with atmospheric plasma treatment. An increase in surface roughness is observed after exposing the surface to plasma. Lap shear testing of untreated and plasma‐treated joints is carried out to correlate the improvement in adhesion properties with the joint strength. A considerable increase in joint strength is observed when the surfaces of these materials are modified by atmospheric pressure plasma. There is a further increase in joint strength when the composites are joined by nanofilled epoxy adhesive, and subsequent exposure to electron beam radiations results in minor increase in the joint strength. Finally, the fractured surfaces of the joints are examined and the analysis is performed. POLYM. ENG. SCI., 50:1505–1511, 2010. © 2010 Society of Plastics Engineers  相似文献   

10.
常压等离子体处理芳砜纶的结构与性能研究   总被引:1,自引:0,他引:1  
分别采用氦气和氦气/氧气对芳砜纶进行常压等离子体处理。采用滴水吸收实验测定处理前后纤维表面的润湿性,利用扫描电子显微镜和X射线光电子能谱仪分析处理前后纤维表面形态和化学成分的变化。结果表明:经常压等离子体处理后芳砜纶表面粗糙度增加,纤维表面碳元素含量下降,羟基、羧基等含氧或氮的极性基团增加,芳砜纶纱线的润湿性能提高,纱线强度没有明显变化,氦气/氧气等离子体处理比氦气等离子体处理效果更好。  相似文献   

11.
常压等离子射流表面改性超高模量聚乙烯纤维   总被引:1,自引:1,他引:0  
利用常压等离子射流(APPJ)方法对超高模量聚乙烯(UHMPE)纤维进行表面改性处理。研究了处理前后UHMPE纤维的力学性能、表面形貌、化学成分、表面粘结性能的变化。结果表明,常压等离子射流处理后,UHMPE纤维的强度未发生显著变化,纤维表面粗糙度增加,表面氧元素的含量增加,表面极性基团增加,纤维与环氧树脂之间的粘结性能得到显著的改善。  相似文献   

12.
The surface modification of ground tire rubber (GTR) powder to enhance its adhesion to nitrile rubber (NBR) vulcanizates was investigated. The hydrophobic surface of GTR powder has been transformed to a hydrophilic one through atmospheric pressure dielectric barrier discharge (DBD). The water contact angle dropped markedly from 116 to 0° after being treated for more than 10 s. Attenuated total reflectance Fourier transform infrared spectral (ATR‐FTIR) studies revealed the increase in peak intensity at 3298 and 1640 cm?1 that correspond to O? H and C?C, respectively, on the surface of the GTR powder. The X‐ray photoelectron spectroscopic (XPS) analysis further confirmed the presence of oxygen containing polar functional groups on the surface of the GTR powder after atmospheric plasma treatment. The improvement in tensile strength and tear strength was observed for the modified GTR‐filled NBR vulcanizates, which is attributed to the enhanced interfacial interaction between modified GTR and NBR matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The present study deals with the consolidation of an ultra‐high performance polymer, the poly(ether ether ketone) (PEEK), for structural applications, using the powder metallurgy (PM) way, and more precisely the Spark Plasma Sintering (SPS) processing. The effects of SPS parameters such as temperature, pressure, and dwell time on density and mechanical properties of PEEK were investigated via a Design of Experiments (DoE). A temperature of 250 °C, a pressure of 40 MPa, and a dwell time of 20 min have been identified as the optimal SPS process parameters. In these conditions, a density of 1.31 g / cm3 was reached and homogeneous mechanical properties in the volume determined by means of compression tests were found with a compressive modulus of 2.75 GPa, a yield strength of 134 MPa, and a maximum compressive strain of 43%. These results are better than those of commercial products obtained by injection molding. The pressure appears to be a significant parameter on PEEK properties and plays positive or negative roles according to the responses of DoE studied. To our knowledge, it is one of the first studies based on the application of the PM techniques for PEEK consolidation showing the possibility to process below its melting point. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44911.  相似文献   

14.
One difference between a low‐pressure plasma treatment and an atmospheric pressure plasma treatment is that in the atmosphere, the substrate material may contain significant quantities of moisture, which could potentially influence the effects of the plasma treatment. To investigate how the existence of moisture affects atmospheric pressure plasma treatment, aramid fibers (Twaron 1000) with three different moisture regains (0.5, 4.5, and 5.5%) were treated by an atmospheric pressure plasma jet for 3 s at a gas flow rate of 8 L/min, a treatment head temperature of 100°C, and a power of 10 W. The scanning electron microscopy analysis showed no observable surface morphology change for the plasma treated samples. X‐ray photoelectron spectroscopy analysis showed the oxygen contents of the 0.5 and 4.5% moisture regain groups increased from that of the control, although the opposite was true for the 5.5% moisture regain group. The advancing contact angles of the treated fibers decreased about 8°–16° whereas their receding contact angles decreased about 17°–27°. The interfacial shear strengths of the treated fibers as measured using microbond pull‐out tests were more than doubled when the moisture regain was 4.5 or 5.5%, whereas it increased by 58% when the moisture regain was 0.5%. In addition, no significant difference in single fiber tensile strength was observed among the plasma treated samples and the control sample. Therefore, we concluded that moisture regain promoted the plasma treatment effect in the improvement of the adhesion property of aramid fibers to epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 242–247, 2006  相似文献   

15.
Surface modification of polyimide films such as Kapton E(N) and Upilex S by argon plasma was investigated because of the enhanced adhesive strength with sputtered copper. Peel tests demonstrated this improvement, with a peel strength of 0.7 and 1.2 g/mm for unmodified Kapton E(N) and Upilex S, respectively, and 110.3 and 98 g/mm for argon plasma–modified Kapton E(N) and Upilex S, respectively, in certain plasma conditions. This study showed that the enhanced adhesive strength of polyimide films with sputtered copper by argon plasma was strongly affected by the surface characteristics such as surface morphology and surface energy of polyimide films. Atomic force microscopy and the sessile drop method indicated that the surface roughness and surface energy of the polyimide films were greatly increased by argon plasma, resulting in highly increased peel strength of the polyimide films with sputtered copper. It was observed in electron spectroscopy for chemical analysis (ESCA) that the increased surface energy of the polyimide films from argon plasma was a result of more of the surface being composed of O and N and of the increased number of C? O, C?O, and C? N chemical bonds. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 744–755, 2006  相似文献   

16.
Possessing excellent properties including good biocompatibility, high strength, and stiffness, polyether-ether-ketone (PEEK) has significant application values in medical and industrial fields. However, the relatively poor wettability and low adhesion limit its further applications. Atmospheric pressure plasma jet (APPJ) has been utilized for adjusting PEEK properties, but better hydrophilization effect and time stability after treatment are still urgently needed. In this paper, we employ a water-mixing nitrogen (N2 H2O) APPJ to process PEEK, and surface wettability can be effectively improved (contact angle ~18° within 2 min, distance between sample and nozzle outlet: 10 mm) without inducing obvious microstructure damages. Additionally, after storing for 40 days, the sample treated by N2 H2O APPJ also possessed better wettability (~54°) compared with that treated by N2 APPJ (~65°). On the basis of this low-damage and high-efficient modification method, we perform aging experiments under different conditions (different temperatures 25, −10°C; and low vacuum condition: 50 kPa) to determine a relatively optimum storing condition for this method. The experiment results indicate that low temperature and vacuum are conducive to retaining the plasma-induced wettability (~34°). The treatment method and storing conditions for PEEK presented here may facilitate the application of PEEK in various fields.  相似文献   

17.
The use of adhesive bonding for high temperature applications is becoming more challenging because of low thermal and mechanical properties of commercially available adhesives. However, the development of high performance polymers can overcome the problem of using adhesive bonding at high temperature. Polybenzimidazole (PBI) is one such recently emerged high performance polymer with excellent thermal and mechanical properties. It has a tensile strength of 160 MPa and a glass transition of 425 °C. Currently, PBI is available in solution form with only 26% concentration in Dimethyl-acetamide solvent. Due to high solvent contents, the process optimization required lot of efforts to form PBI adhesive bonded joints with considerable lap shear strength. Therefore, in present work, efforts are devoted to optimize the adhesive bonding process of PBI in order to make its application possible as an adhesive for high temperature applications. Bonding process was optimized using different curing time and temperatures. Epoxy based carbon fiber composite bonded joints were successfully formed with single lap shear strength of 21 Mpa. PBI adhesive bonded joints were also formed after performing the atmospheric pressure plasma treatment of composite substrate. Plasma treatment has further improved the lap shear strength of bonded joints from 21 MPa to 30 MPa. Atmospheric pressure plasma treatment has also changed the mode of failure of composite bonded joints.  相似文献   

18.
常压等离子体改善高性能纤维粘结性的研究   总被引:2,自引:1,他引:1  
以氦气为载气,氧气为反应气体,对高强度聚乙烯和Twaron 1000芳纶两种高性能纤维进行常压等离子体处理,来改善纤维的粘结性能;采用单纤维抽拔实验测定等离子体处理前后纤维与环氧树脂之间的界面剪切力;利用原子力显微镜和X射线光电子能谱仪分析等离子体处理前后纤维表面形态和化学成分的变化。结果表明:高强度聚乙烯纤维和芳纶经常压等离子体处理后,纤维表面粗糙度增加,纤维表面碳元素含量下降,羟基、羧基等含氧或氮的极性基团增加,纤维粘结性能得到提高,但其强度无明显变化。  相似文献   

19.
Poly(tetrafluoroethylene-co-perfluoro [alkyl vinyl ether]) (PFA) and polytetrafluoroethylene (PTFE) films were treated by three kinds of atmospheric pressure glow plasmas: an untreated sample was treated by He plasma or trimethoxyborane (TMB)/H2/He plasma, and a TMB-absorbed sample was treated by H2/He plasma. TMB was a new reactant for the treatment, to increase the films’ adhesive strength with an epoxy glue. These films were also treated by a wet method using a sodium solution (Tetra-Etch compound) and such films were used as the control samples. The peel strength values of the controls of PFA and PTFE were 3.5 and 9.5 N cm−1, respectively. The adhesive strengths of all plasma-treated PFAs were stronger than those of untreated one. Especially, the peel strength of the TMB/H2/He plasma-treated PFA showed the maximum value of 4.5 N cm−1, which was bigger than that of the control one. The adhesive strength of the TMB/H2/He plasma-treated PTFE films also showed the maximum peel strength, 7.9 N cm−1, but this value did not exceed that of the control PTFE. Such results suggested that the TMB/H2/He plasma had the advantage of providing better adhesive improvement of those polymers, especially PFA than the wet method could provide. The results of XPS and SEM indicated that TMB actively removed fluorine atoms from the polymer surface. Therefore, boron compounds are effective for the improvement of the adhesive strength between the fluorinated polymer and the epoxy glue.  相似文献   

20.
Surface modification of polycaprolactone filament has been carried out using a low pressure oxygen plasma to introduce active centers in the form of radicals, peroxides, and hydroperoxides on the surface. Evaluation by 2, 2‐diphenyl‐1‐picrylhydrazyl method shows that there is an optimum value of exposure time, gas pressure, and discharge power for the generation of the maximum concentration of such groups. The plasma exposure time was thereafter varied to study the extent of the surface modification introduced by the plasma. It was found that only a short time of exposure to the oxygen plasma was necessary to make the surface highly wettable and polar with increased surface energy and work of adhesion. Surface chemical analysis by X‐ray photoelectron spectroscopy revealed that this happens because of oxidation of the top layer of the filament, which occurs primarily by the breaking of bonds and incorporation of oxygen containing functionalities. Morphological and topographical observations by scanning electron microscopy and atomic force microscopy revealed that etching is pronounced at longer exposure times leading to a rougher surface with hill‐valley features. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号